• 제목/요약/키워드: Wind Turbulence

검색결과 614건 처리시간 0.025초

변동풍속의 파워 스펙트럴 밀도에 관한 평가 (Estimation on the Power Spectral Densities of Daily Instantaneous Maximum Fluctuation Wind Velocity)

  • 오종섭
    • 한국방재안전학회논문집
    • /
    • 제10권2호
    • /
    • pp.21-28
    • /
    • 2017
  • 시공간적으로 불규칙하게 작용하는 변동 풍속 난류의 자료는 풍공학적으로 돌풍계수 평균풍속 변동 풍하중등의 계산에서 요구되지만, 내풍 및 사용성에 따른 동적응답의 평가에서는 변동 풍속의 파워 스펙트럴 밀도함수가 요구된다. 본 논문에서는 1987-2016.12.1일까지의 일순간최대풍속 자료를 확률과정으로 가정했고, 이 실측된 자료와 확률이론을 근거로 평균류방향 파워 스펙트럴 밀도 함수에 대한 기초적 자료를 얻고자 대표지점(6개 지점)을 선정했다. 선정된 각 지점에 대한 일순간최대풍속자료는 기상청으로부터 획득했다. 해석결과 본 논문에서 평가된 스펙트럼 모델은 저진동수 영역에서는 Solari, 고진동수 영역에서는 von Karman의 모델과 근접한 현상을 나타냈다.

Aerodynamic analysis of cambered blade H-Darrieus rotor in low wind velocity using CFD

  • Sengupta, Anal Ranjan;Biswas, Agnimitra;Gupta, Rajat
    • Wind and Structures
    • /
    • 제33권6호
    • /
    • pp.471-480
    • /
    • 2021
  • This present paper leads to investigation of blade-fluid interactions of cambered blade H-Darrieus rotor having EN0005 airfoil blades using comprehensive Computational Fluid Dynamics (CFD) analysis to understand its performance in low wind streams. For several blade azimuthal angle positions, the effects of three different low wind speeds are studied regarding their influence on the blade-fluid interactions of the EN0005 blade rotor. In the prevailing studies by various researchers, such CFD analysis of H-Darrieus rotors are very less, hence it is needed to improve their steady-state performance in low wind velocities. Such a study is also important to obtain important performance insights of such thin cambered blade rotor in its complete rotational cycle. It has been seen that the vortex generated at the suction side of the EN0005 blade rolls back to its leading edge due to the camber of the blade and thus a peak velocity occurs near to the nose position of this blade at its leading edge, which leads to peak performance of this rotor. Again, in the returning phase of the blade, a secondary recirculating vortex is generated that acts on the pressure side of EN0005 blade rotor that increases the performance of this cambered EN0005 blade rotor in its downstream position as well. Here, the aerodynamic performances have been compared considering Standard k-ε and SST k-ω models to check the better suited turbulence model for the cambered EN0005 blade H-Darrieus rotor in low tip speed ratios.

Pressure distribution on rectangular buildings with changes in aspect ratio and wind direction

  • Lee, Young Tae;Boo, Soo Ii;Lim, Hee Chang;Misutani, Kunio
    • Wind and Structures
    • /
    • 제23권5호
    • /
    • pp.465-483
    • /
    • 2016
  • This study aims to enhance the understanding of the surface pressure distribution around rectangular bodies, by considering aspects such as the suction pressure at the leading edge on the top and side faces when the body aspect ratio and wind direction are changed. We carried out wind tunnel measurements and numerical simulations of flow around a series of rectangular bodies (a cube and two rectangular bodies) that were placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equations with the typical two-equation model (i.e., the standard $k-{\varepsilon}$ model) were solved, and the results were compared with the wind tunnel measurement data. Regarding the turbulence model, the results of the $k-{\varepsilon}$ model are in overall agreement with the experimental results, including the existing data. However, because of the blockage effects in the computational domain, the pressure recovery region is underpredicted compared to the experimental data. In addition, the $k-{\varepsilon}$ model sometimes will fail to capture the exact flow features. The primary emphasis in this study is on the flow characteristics around rectangular bodies with various aspect ratios and approaching wind directions. The aspect ratio and wind direction influence the type of wake that is generated and ultimately the structural loading and pressure, and in particular, the structural excitation. The results show that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and side faces of the cube. In addition, the transverse width has a substantial effect on the variations in surface pressure around the bodies, while the longitudinal length has less influence compared to the transverse width.

Effect of internal angles between limbs of cross plan shaped tall building under wind load

  • Kumar, Debasish;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • 제24권2호
    • /
    • pp.95-118
    • /
    • 2017
  • The present study revealed comparison the pressure distribution on the surfaces of regular cross plan shaped building with angular cross plan shaped building which is being transformed from basic cross plan shaped building through the variation of internal angles between limbs by $15^{\circ}$ for various wind incidence angle from $0^{\circ}$ to $180^{\circ}$ at an interval of $30^{\circ}$. In order to maintain the area same the limbs sizes are slightly increased accordingly. Numerical analysis has been carried out to generate similar nature of flow condition as per IS: 875 (Part -III):1987 (a mean wind velocity of 10 m/s) by using computational fluid dynamics (CFD) with help of ANSYS CFX ($k-{\varepsilon}$ model). The variation of mean pressure coefficients, pressure distribution over the surface, flow pattern and force coefficient are evaluated for each cases and represented graphically to understand extent of nonconformities due to such angular modifications in plan. Finally regular cross shaped building results are compared with wind tunnel results obtained from similar '+' shaped building study with similar flow condition. Reduction in along wind force coefficients for angular crossed shaped building, observed for various skew angles leads to develop lesser along wind force on building compared to regular crossed shaped building and square plan shaped building. Interference effect within the internal faces are observed in particular faces of building for both cases, considerably. Significant deviation is noticed in wind induced responses for angular cross building compared to regular cross shaped building for different direction wind flow.

FAST, GH Bladed 및 CFD기법을 이용한 5MW 해상풍력터빈 시스템 설계하중조건 해석 및 비교 (Design Load Case Analysis and Comparison for a 5MW Offwhore Wind Turbine Using FAST, GH Bladed and CFD Method)

  • 김기하;김동현;곽영섭;김수현
    • 한국유체기계학회 논문집
    • /
    • 제18권2호
    • /
    • pp.14-21
    • /
    • 2015
  • Design lifetime of a wind turbine is required to be at least 20 years. The most important step to ensure the deign is to evaluate the loads on the wind turbine as accurately as possible. In this study, extreme design load of a offshore wind turbine using Garrad Hassan (GH) Bladed and National Renewable Energy Laboratory (NREL) FAST codes are calculated considering structural dynamic loads. These wind turbine aeroelastic analysis codes are high efficiency for the rapid numerical analysis scheme. But, these codes are mainly based on the mathematical and semi-empirical theories such as unsteady blade element momentum (UBEM) theory, generalized dynamic wake (GDW), dynamic inflow model, dynamic stall model, and tower influence model. Thus, advanced CFD-dynamic coupling method is also applied to conduct cross verification with FAST and GH Bladed codes. If the unsteady characteristics of wind condition are strong, such as extreme design wind condition, it is possible to occur the error in analysis results. The NREL 5 MW offshore wind turbine model as a benchmark case is practically considered for the comparison of calculated designed loads. Computational analyses for typical design load conditions such as normal turbulence model (NTM), normal wind profile (NWP), extreme operation gust (EOG), and extreme direction change (EDC) have been conducted and those results are quantitatively compared with each other. It is importantly shown that there are somewhat differences as maximum amount of 18% among numerical tools depending on the design load cases.

Spatial correlation-based WRF observation-nudging approach in simulating regional wind field

  • Ren, Hehe;Laima, Shujin;Chen, Wen-Li;Guo, Anxin;Li, Hui
    • Wind and Structures
    • /
    • 제28권2호
    • /
    • pp.129-140
    • /
    • 2019
  • Accurately simulating the wind field of large-scale region, for instant urban areas, the locations of large span bridges, wind farms and so on, is very difficult, due to the complicated terrains or land surfaces. Currently, the regional wind field can be simulated through the combination of observation data and numerical model using observation-nudging in the Weather Research and Forecasting model (WRF). However, the main drawback of original observation-nudging method in WRF is the effects of observation on the surrounding field is fully mathematical express in terms of temporal and spatial, and it ignores the effects of terrain, wind direction and atmospheric circulation, while these are physically unreasonable for the turbulence. For these reasons, a spatial correlation-based observation-nudging method, which can take account the influence of complicated terrain, is proposed in the paper. The validation and comparation results show that proposed method can obtain more reasonable and accurate result than original observation-nudging method. Finally, the discussion of wind field along bridge span obtained from the simulation with spatial correlation-based observation-nudging method was carried out.

윈드 디플렉터 형상에 따른 트레일러 주위의 유동해석에 관한 융합 연구 (A Convergent Study on Flow Analysis near Trailer due to Shape of Wind Deflector)

  • 최계광;조재웅
    • 한국융합학회논문지
    • /
    • 제11권8호
    • /
    • pp.159-163
    • /
    • 2020
  • 본 연구에서는 트레일러의 디플렉터의 유무 및 그 형상들에 따른 주위의 유동해석을 하였다. 디플렉터가 없는 경우는 디플렉터가 있는 경우보다 컨테이너 뒤로 생기는 난류의 운동에너지도 더 넓은 영역에서 더 높은 운동 에너지가 발생하여 그 항력으로 인하여 차량의 주행성에 나쁜 영향을 미친다. 트레일러의 윈드 디플렉터가 없는 모델은 디플렉터가 있는 모델보다 트레일러 주변 유속이 불안정하고, 난류의 운동에너지도 많이 생겨서, 트레일러에 디플렉터를 설치하므로서 그 연비상승을 기대할 수 있다고 사료된다. 윈드 디플렉터 형상에 따른 트레일러 주위의 유동해석에 대한 연구결과를 적용함으로서, 본 연구가 미적인 융합에 적합된다고 보인다.

두께의 불확실성을 갖는 풍동시험 익형모델의 공력특성에 관한 수치해석 연구 (Numerical Study of the Aerodynamic Characteristics of an Airfoil with Thickness Uncertainty for a Wind Tunnel Testing)

  • 이태형;권기정;김근택;안석민
    • 한국항공우주학회지
    • /
    • 제40권6호
    • /
    • pp.475-484
    • /
    • 2012
  • 익형 풍동시험 시 모델의 제작오차에 의해 시험 익형과 지지대 익형의 두께에서 차이가 있을 경우 시험 익형의 공력특성에 주는 영향을 양력, 항력 및 모멘트 값의 변화를 수치 해석하여 비교 및 분석하였다. 이를 위해 익형모델을 세 부분으로 나누어 제작하는 경우 가운데 위치하는 시험 익형을 기준 형상으로 하여 시험 익형 양쪽에 부착하여 지지대 역할을 하는 익형의 최대두께를 가운데 익형에 비해 작게 설정하였다. 익형모델은 NACA64- 418을 사용하였으며, 난류모델은 천이현상을 잘 예측할 수 있는 Transition SST를 사용하였다. 다양한 받음각과 레이놀즈 수에서 지지대 역할을 하는 익형모델과 두께 차이가 매우 큰 경우에도 가운데 위치한 시험 익형의 공력특성에 미치는 영향이 매우 작음을 확인하였다.

CFD를 이용한 박스형 건물의 풍압분포 분석에 관한 연구 (A Study of Wind Pressure Distribution for a Rectangular Building Using CFD)

  • 신동신;박재현;강보미;김은미;임형준;이진영
    • 설비공학논문집
    • /
    • 제28권1호
    • /
    • pp.1-6
    • /
    • 2016
  • This paper studies the wind pressure distribution over the Commonwealth Advisory Aeronautical Council building model (CAARC model) using CFD. We also considered the interaction between the CAARC model and other buildings. The Reynolds number based on the building height was 380,000. The number of sells for the simulation was about 500,000. The wind pressure was lowest when the wind direction was blowing at an angle 45 degrees of the CAARC model. When the gap between the two buildings in front of the CAARC was over 1/2 the horizontal length of the CAARC model, the wind pressure was higher than the pressure without the two buildings. When the distance between the two front buildings and the CAARC was less than 1.5 times the vertical length of the CAARC model, the wind pressure increased. Accordingly, the relative distance between two buildings or the distance from the CAARC model should be considered when extra wind exists due to other buildings.

The influence of internal ring beams on the internal pressure for large cooling towers with wind-thermal coupling effect

  • Ke, Shitang;Yu, Wei;Ge, Yaojun;Zhao, in;Cao, Shuyang
    • Wind and Structures
    • /
    • 제28권1호
    • /
    • pp.1-17
    • /
    • 2019
  • Internal ring beams are primary components of new ring-stiffened cooling towers. In this study, numerical simulation of the internal flow field of a cooling tower with three ring beams under wind-thermal coupling effect is performed. The studied cooling tower is a 220-m super-large hyperbolic indirect natural draft cooling tower that is under construction in China and will be the World's highest cooling tower, the influence of peripheral radiators in operating cooling tower is also considered. Based on the simulation, the three-dimensional effect and distribution pattern of the wind loads on inner surface of the cooling tower is summarized, the average wind pressure distributions on the inner surface before and after the addition of the ring beams are analyzed, and the influence pattern of ring beams on the internal pressure coefficient value is derived. The action mechanisms behind the air flows inside the tower are compared. In addition, the effects of internal ring beams on temperature field characteristics, turbulence kinetic energy distribution, and wind resistance are analyzed. Finally, the internal pressure coefficients are suggested for ring-stiffened cooling towers under wind-thermal coupling effect. The study shows that the influence of internal stiffening ring beams on the internal pressure and flow of cooling towers should not be ignored, and the wind-thermal coupling effect should also be considered in the numerical simulation of cooling tower flow fields. The primary conclusions presented in this paper offer references for determining the internal suction of such ring-stiffened cooling towers.