• 제목/요약/키워드: Wind Turbulence

검색결과 616건 처리시간 0.023초

2엽형 수직축 풍력발전기의 유동해석 및 실험 비교 (AERODYNAMIC ANALYSIS AND COMPARISON OF EXPERIMENTAL DATA FOR 2-BLADED VERTICAL AXIS WIND TURBINE)

  • 황미현;김동현;이종욱;오민우;김명환;류경중
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.85-91
    • /
    • 2010
  • In this study, aerodynamic analyses based on unsteady computational fluid dynamics (CFD) have been conducted for a 2-bladed vertical-axis wind turbine (VAWT) configuration. Reynolds-averaged Navier-Stokes equations with standard $k-{\varepsilon}$ and SST $k-{\varepsilon}$ turbulence models are solved for unsteady flow problems. The experiment model of 2-bladed VAWT has been designed and tested in this study. Aerodynamic experiment of the present VAWT model are effectively conducted using the vehicle mounted testing system. The comparison result between the experiment and the computational fluid dynamics (CFD) analysis are presented in order to verify the accuracy of CFD modeling with different turbulent models.

상류형 풍력 터빈의 주요 소음원과 방사소음에 대한 실험적/이론적 고찰 (Experimental and Theoretical Study on Main Noise Sources and Its Radiations of Upwind Wind Turbines)

  • 이광세;정철웅;신수현;정성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 춘계학술대회 논문집
    • /
    • pp.72-73
    • /
    • 2010
  • In this paper, the main noise sources and its radiated noise levels of upwind horizontal-axis wind turbines are experimentally and theoretically investigated. Theoretical predictions for indentifying the dominant source locations are made by using the empirical noise prediction model of Brooks et al. (1989) for the airfoil self noise. Through the comparison of theoretical results with the experimental results, turbulence-boundary-layer-trailing-edge (TBL-TE) noise is revealed to be the dominant source over all frequency range and separation and stall (S-S) noise is possibly important in the relative lower frequency range compared with TBL-TE noise.

  • PDF

폐쇄형 풍동 시험부내의 진동하는 익형 주위 유동에 대한 비정상 벽면효과 연구 (UNSTEADY WALL INTERFERENCE EFFECT ON FLOWS AROUND AN OSCILLATING AIRFOIL IN CLOSED TEST-SECTION WIND TUNNELS)

  • 강승희;권오준;홍승규
    • 한국전산유체공학회지
    • /
    • 제10권2호
    • /
    • pp.60-68
    • /
    • 2005
  • For study on the unsteady wall interference effect, flows around a forced oscillating airfoil in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The Spalart-Allmaras one-equation model is employed for the turbulence effect. The computed results of the oscillating airfoil having a thin wake showed that the lift curve slope is increased and the magnitude of hysteresis loop is reduced by the interference effects. Since the vortex around the airfoil is generated and convected downstream faster than the free-air condition, the phase of lift, drag and pitching moment coefficients was shifted. The pressure on the test section wall shows harmonic terms having the oscillating frequency contained in the wail effect.

Three-dimensional numerical simulation of turbulent flow around two high-rise buildings in proximity

  • Liu, Min-Shan
    • Wind and Structures
    • /
    • 제1권3호
    • /
    • pp.271-284
    • /
    • 1998
  • This paper uses the numerical simulation to investigate the interference effect of 3-D turbulent flow around two high rise buildings in proximity at the different relative heights, gaps, and wind velocities. The computer program used to carry out the simulation is based on the control volume method and the SIMPLEST algorithm. The ${\kappa}-{\varepsilon}$ model was used to simulate turbulence effects. Since the contracted flow between two adjacent buildings enhances the strength of vortex shedding from the object building, the pressure coefficient on each side wall of the object building is generally increased by the presence of apposed building. The effect is increased as the relative height or the gap between the two buildings decreases. The velocity on the vertical center line between two buildings is about 1.4 to 1.5 times the upstream wind velocity.

풍하중을 받는 초고층건물의 FSI 해석을 위한 코어 삽입 등가 강성 모델링 기법에 관한 연구 (A Study on the Core Equivalent Stiffness Modeling Technique for FSI Analysis of High-Rise Buildings Under Wind Load)

  • 오강환;전두진;한상을
    • 한국공간구조학회논문집
    • /
    • 제17권3호
    • /
    • pp.65-73
    • /
    • 2017
  • Recently, the trend is emerging a variety of irregular tall buildings. It is important to design the building for lateral load according to this trend. Fluid Structure Interaction(FSI) simulation can be performed to understand the vibrations of the structure against dynamic wind loads. In order to make the physical characteristics of the actual structure and the analytical model the same, we studied core inserting equivalent stiffness modeling method. As a result of this analysis, the stiffness of the structure can be set similar to that of the two axes of the structure, and turbulence can be reproduced through the acceleration tendency.

NREL Phase VI 수평축 풍력터빈의 공력특성에 관한 수치적 연구 (A Numerical Study on the Aerodynamic Characteristics for a HAWT of NREL Phase VI)

  • 모장오;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.886-895
    • /
    • 2009
  • The purpose of this work is to compare and analyze computed results with experimental data of NREL (National Renewable Energy Laboratory) Phase VI for the whole operating conditions of various wind speeds using $\kappa-\omega$ turbulence model provided in the commercial code, FLUENT. Performance results such as power coefficient, shaft torque, pressure coefficient show a good agreement with experimental data. But, root bending moment is over-predicted than the experimentally measured value by about 30% for the whole operating conditions because of indefinite measurement reference. Nevertheless, these results qualitatively show a good tendency in the aspect of aerodynamic performance. As wind speed increases, streamlines on the surface of blade show more and more complex pattern.

활주로 주변 건물을 지나는 측풍에 의한 이.착륙 항공기의 받음각 감소에 관한 연구 (A study on the reduction in angle of attack by the constructions in the vicinity of airport runway with crosswind)

  • 홍교영;신동진;박수복
    • 한국항공운항학회지
    • /
    • 제17권2호
    • /
    • pp.1-7
    • /
    • 2009
  • This paper illustrates how simulation modeling can be of substantial help in designing constructions in the vicinity of airport runway and presents results about the influence of aircraft wake vortices through computer simulation. The cross-wind energy dissipation rate is estimated from the Y-directional velocity spectrum for a sample in a real meteorological observation data. The eddy region about cross wind in the vicinity of airport runway is highly dependent on the height and shape of the buildings and the AOA of aircraft is greatly influenced by Y-directional velocity occurred by dint of separation region in runway.

  • PDF

저속풍동실험 및 유동해석을 통한 고속전철 판토그라프의 유동소음 해석 (Prediction of Aeroacoustics Noise of Pantograph via Low Speed Wind Tunnel Test and Flow Simulation)

  • 조운기;이종수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1207-1214
    • /
    • 2001
  • The paper deals with the computational approach in analysis and design of pantograph panhead strips of high-speed railway in aerodynamic and aeroacoustic concerns. Pantograph is an equipment such that the electric power is supplied from catenary system to train. Due to the nature of complexity in high-speed fluid flow, turbulence and downstream vortices result in the instability in the aerodynamic contact between panhead strips and catenary system, and consequently generate the considerable levels of flow-induced sound. In this paper, based on the preceding low speed wind-tunnel test and simulations, the aerodynamic and aeroacoustic characteristics in low speed are analyzed.

  • PDF

Aerodynamic shape optimization of a high-rise rectangular building with wings

  • Paul, Rajdip;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • 제34권3호
    • /
    • pp.259-274
    • /
    • 2022
  • The present paper is focused on analyzing a set of Computational Fluid Dynamics (CFD) simulation data on reducing orthogonal peak base moment coefficients on a high-rise rectangular building with wings. The study adopts an aerodynamic optimization procedure (AOP) composed of CFD, artificial neural network (ANN), and genetic algorithm (G.A.). A parametric study is primarily accomplished by altering the wing positions with 3D transient CFD analysis using k - ε turbulence models. The CFD technique is validated by taking up a wind tunnel test. The required design parameters are obtained at each design point and used for training ANN. The trained ANN models are used as surrogates to conduct optimization studies using G.A. Two single-objective optimizations are performed to minimize the peak base moment coefficients in the individual directions. An additional multiobjective optimization is implemented with the motivation of diminishing the two orthogonal peak base moments concurrently. Pareto-optimal solutions specifying the preferred building shapes are offered.

Large eddy simulation of wind loads on a long-span spatial lattice roof

  • Li, Chao;Li, Q.S.;Huang, S.H.;Fu, J.Y.;Xiao, Y.Q.
    • Wind and Structures
    • /
    • 제13권1호
    • /
    • pp.57-82
    • /
    • 2010
  • The 486m-long roof of Shenzhen Citizens Centre is one of the world's longest spatial lattice roof structures. A comprehensive numerical study of wind effects on the long-span structure is presented in this paper. The discretizing and synthesizing of random flow generation technique (DSRFG) recently proposed by two of the authors (Huang and Li 2008) was adopted to produce a spatially correlated turbulent inflow field for the simulation study. The distributions and characteristics of wind loads on the roof were numerically evaluated by Computational Fluid Dynamics (CFD) methods, in which Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes Equations (RANS) Model were employed. The main objective of this study is to explore a useful approach for estimations of wind effects on complex curved roof by CFD techniques. In parallel with the numerical investigation, simultaneous pressure measurements on the entire roof were made in a boundary layer wind tunnel to determine mean, fluctuating and peak pressure coefficient distributions, and spectra, spatial correlation coefficients and probability characteristics of pressure fluctuations. Numerical results were then compared with these experimentally determined data for validating the numerical methods. The comparative study demonstrated that the LES integrated with the DSRFG technique could provide satisfactory prediction of wind effects on the long-span roof with complex shape, especially on separation zones along leading eaves where the worst negative wind-induced pressures commonly occur. The recommended LES and inflow turbulence generation technique as well as associated numerical treatments are useful for structural engineers to assess wind effects on a long-span roof at its design stage.