• 제목/요약/키워드: Wind Turbulence

검색결과 614건 처리시간 0.027초

초음속 풍동에서 발생하는 충격파 히스테리시스 현상의 연구 (Investigation into the Hysteretic Behaviors of Shock Wave in a Supersonic Wind Tunnel)

  • 이익인;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.609-611
    • /
    • 2017
  • 최근 다양한 산업 및 공학 응용분야에서 히스테리시스 현상이 자주 발생하며, 이에 대한 많은 관심과 연구가 수행되었다. 이러한 현상은 주로 압력비가 일시적으로 변화하는 과정에서 발생되며, 초음속 풍동 시동과정에 영향을 미칠 것으로 예상되나, 이에 대한 연구가 미미한 실정이다. 본 연구에서는 초음속 풍동 내부에서 발생하는 히스테리시스 현상을 수치해석으로 조사하였다. 비정상, 축대칭, 압축성 Navier-Stokes 방정식을 유한 체적법으로 이산화 하였으며, Spalart-Allmaras 난류모델을 적용하였다. 본 연구의 결과로 초음속 풍동 시동과정에서 시동압력비와 작동압력비가 다른 원인을 히스테리시스 현상으로 설명하였다.

  • PDF

On the modeling methods of small-scale piezoelectric wind energy harvesting

  • Zhao, Liya;Yang, Yaowen
    • Smart Structures and Systems
    • /
    • 제19권1호
    • /
    • pp.67-90
    • /
    • 2017
  • The interdisciplinary research area of small scale energy harvesting has attracted tremendous interests in the past decades, with a goal of ultimately realizing self-powered electronic systems. Among the various available ambient energy sources which can be converted into electricity, wind energy is a most promising and ubiquitous source in both outdoor and indoor environments. Significant research outcomes have been produced on small scale wind energy harvesting in the literature, mostly based on piezoelectric conversion. Especially, modeling methods of wind energy harvesting techniques plays a greatly important role in accurate performance evaluations as well as efficient parameter optimizations. The purpose of this paper is to present a guideline on the modeling methods of small-scale wind energy harvesters. The mechanisms and characteristics of different types of aeroelastic instabilities are presented first, including the vortex-induced vibration, galloping, flutter, wake galloping and turbulence-induced vibration. Next, the modeling methods are reviewed in detail, which are classified into three categories: the mathematical modeling method, the equivalent circuit modeling method, and the computational fluid dynamics (CFD) method. This paper aims to provide useful guidance to researchers from various disciplines when they want to develop and model a multi-way coupled wind piezoelectric energy harvester.

Numerical and Experimental Investigations of Dynamic Stall

  • Geissler, Wolfgang;Raffel, Markus;Dietz, Guido;Mai, Holger
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.19-19
    • /
    • 2009
  • Dynamic Stall is a flow phenomenon which occurs on the retreating side of helicopter rotor blades during forward flight. It also occurs on blades of stall regulated wind turbines under yawing conditions as well as during gust loads. Time scales occurring during this process are comparable on both helicopter and wind turbine blades. Dynamic Stall limits the speed of the helicopter and its manoeuvrability and limits the amount of power production of wind turbines. Extensive numerical as well as experimental investigations have been carried out recently to get detailed insight into the very complex flow structures of the Dynamic Stall process. Numerical codes have to be based on the full equations, i.e. the Navier-Stokes equations to cover the scope of the problems involved: Time dependent flow, unsteady flow separation, vortex development and shedding, compressibility effects, turbulence, transition and 3D-effects, etc. have to be taken into account. In addition to the numerical treatment of the Dynamic Stall problem suitable wind tunnel experiments are inevitable. Comparisons of experimental data with calculated results show us the state of the art and validity of the CFD-codes and the necessity to further improve calculation procedures. In the present paper the phenomenon of Dynamic Stall will be discussed first. This discussion is followed by comparisons of some recently obtained experimental and numerical results for an oscillating helicopter airfoil under Dynamic Stall conditions. From the knowledge base of the Dynamic Stall Problems, the next step can be envisaged: to control Dynamic Stall. The present discussion will address two different Dynamic Stall control methodologies: the Nose-Droop concept and the application of Leading Edge Vortex Generators (LEVoG's) as examples of active and passive control devices. It will be shown that experimental results are available but CFD-data are only of limited comparison. A lot of future work has to be done in CFD-code development to fill this gap. Here mainly 3D-effects as well as improvements of both turbulence and transition modelling are of major concern.

  • PDF

Dynamic behavior of H-shape tall building subjected to wind loading computed by stochastic and CFD methodologies

  • Lucas Willian Aguiar Mattias;Joao Elias Abdalla Filho
    • Wind and Structures
    • /
    • 제37권3호
    • /
    • pp.229-243
    • /
    • 2023
  • This study analyzes the response of a tall building with an H-shaped cross-section when subjected to wind loading generated by the same H-shape. As normative standards usually adopt regular geometries for determining the wind loading, this paper shows unpublished results which compares results of the dynamic response of H-shaped buildings with the response of simplified section buildings. Computational Fluid Dynamics (CFD) is employed to determine the steady wind load on the H-shaped building. The CFD models are validated by comparison with wind tunnel test data for the k-ε and k-ω models of turbulence. Transient wind loading is determined using the Synthetic Wind Method. A new methodology is presented that combines Stochastic and CFD methods. In addition, time-history dynamic structural analysis is performed using the HHT method for a period of 60 seconds on finite element models. First, the along-wind response is studied for wind speed variations. The wind speeds of 28, 36, 42, and 50 m/s at 0° case are considered. Subsequently, the dynamic response of the building is studied for wind loads at 0°, 45°, and 90° with a wind speed of 42 m/s, which approximates the point of resonance between gusts of wind and the structure. The response values associated with the first two directions for the H-shaped building are smaller than those for the R-shaped (Equivalent Rectangular Shape) one. However, the displacements of the H-shaped building associated with the latter wind load are larger.

연직바람관측장비와 레윈존데의 비교를 통한 난류 에너지 감소률의 특성 분석 (An Analysis on Characteristics of Turbulence Energy Dissipation Rate from Comparison of Wind Profiler and Rawinsonde)

  • 강우경;문윤섭;정옥진
    • 한국지구과학회지
    • /
    • 제37권7호
    • /
    • pp.448-464
    • /
    • 2016
  • 본 연구의 목적은 우리나라 추풍령 기상관측소에서 연직바람관측장비와 레윈존데 간 풍속 자료의 유효화를 통해 연직바람관측장비의 운영 프로그램인 PCL 1300 내 일관성 검사와 관련된 매개변수를 최적화하는 것이다. 그런 다음 2009년 3월부터 2010년 2월까지 맑은 날과 강수 발생일에 대한 난류 에너지 감소률의 특성(${\varepsilon}$)을 분석하는 것이다. 2010년 4월 22일부터 4월 23일까지 레윈존데와 연직바람관측장비의 바람 관측 자료를 비교한 결과, 동서(u) 성분과 남북(v) 성분의 바람에서 고도 3,000 m 이후에서 $10ms^{-1}$ 이상의 큰 차이를 나타내었다. 두 기기 사이 u 성분과 v 성분의 바람에 대한 풍속 차가 $10ms^{-1}$를 넘는 경우를 제외할 경우 두 바람 성분에 대한 상관계수는 각각 0.92와 0.88이었고, 제곱근 평균 오차는 각각 $3.07ms^{-1}$$1.06ms^{-1}$이었다. 이들 결과에 준하여 PCL1300 프로그램의 자료 처리 시간을 30분으로 조정하고, 최소 이용 자료는 전체의 60%로 조정할 경우가 비교적 작은 편의를 나타내었다. 한편 PCL1300 운영프로그램에서 u, v 성분의 일관성 검사에 대한 민감도 분석 결과, 시선속도 일관성, 동시성, 풍속 일관성 검사에서 u 성분에 대해서는 과소평가 되었고, 반면 v 성분에 대해서는 과대평가 되었다. 최종적으로 PCL1300 운영 프로그램의 최적화를 통해 맑은 날과 강수 발생일의 난류 에너지 감소률(${\varepsilon}$)을 분석한 결과, 각 고도에서 ${\varepsilon}$의 일별 및 계절별 평균은 강수 발생일이 맑은 날에 비해 높게 나타났는데, 이는 상승하강 기류에 따른 연직속도가 증가하였기 때문이다. 그리고 맑은 날과 강수 발생일 모두 계절별 ${\varepsilon}$ 평균은 겨울이 낮게 나타났는데, 이는 겨울이 다른 계절에 비해 수평 풍속이 강했기 때문이다. 결과적으로 연직속도가 ${\pm}10cm\;s^{-1}$ 이상에 해당하는 맑은 날과 강수 발생일의 ${\varepsilon}$ 값을 제외할 경우 강수발생일은 맑은 날에 비해 약 6-7배 ${\varepsilon}$이 높게 나타났으며, 연직속도를 모두 고려할 경우는 약 4-5배 더 높게 나타났다.

빌딩주변 자동차 배기가스중의 NOx 분산에 관한 수치해석 (Numerical Simulation on Dispersion of NOx in Vehicular Exhaust Gas around Buildings)

  • 전영남;정오진;송형운
    • 한국환경과학회지
    • /
    • 제13권7호
    • /
    • pp.655-660
    • /
    • 2004
  • This paper demonstrates the numerical simulation of three dimensional flow pattern for vehicular exhaust dispersion in the street canyons. The wind flow around buildings in urban is computed by the SIMPLEST method. The convection-diffusion equation was used to compute the $NO_X$ concentration level near buildings. Details are given of important boundary conditions and turbulence quantities variations. The simple turbulence model was used for unisotropic viscous effect. A control-volume based finite-difference method with the upwind scheme is employed for discretization equation. The simple turbulence model applied in this study has been verified through comparison between predicted and measured data near buildings. By the predictive results, the updraft induced by the presence of high-rise buildings is important in the transport of street level pollutant out from the street canyons. Our suggestion for reducing ground level pollution is to have high-rise buildings constructed or to reduce the channelling effect of street canyons.

초음속 유도탄 기저항력 예측의 불확실성 (Uncertainties In Base Drag Prediction of A Supersonic Missile)

  • 안효근;홍승규;이복직;안창수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.47-51
    • /
    • 2004
  • Accurate Prediction of a supersonic missile base drag continues to defy even well-rounded CFD codes. In an effort to address the accuracy and predictability of the base drags, the influence of grid system and competitive turbulence models on the base drag is analyzed. Characteristics of some turbulence models is reviewed through incompressible turbulent flow over a flat plate, and performance for the base drag prediction of several turbulence models such as Baldwin-Lomax(B-L), Spalart-Allmaras(S-A), $\kappa-\epsilon$, $\kappa-\omega$ model is assessed. When compressibility correction is injected into the S-A model, prediction accuracy of the base drag is enhanced. The NSWC wind tunnel test data are utilized for comparison of CFD and semi-empirical codes on the accuracy of base drag predictability: they are about equal, but CFD tends to perform better. It is also found that, as angle of attack of a missile with control (ins increases, even the best CFD analysis tool we have lacks the accuracy needed for the base drag prediction.

  • PDF

한국에서 발생한 청천난류 사례에서 나타나는 종관규모 대기상태에 대한 연구 (An Investigation of Synoptic Condition for Clear-Air Turbulence (CAT) Events Occurred over South Korea)

  • 민재식;전혜영;김정훈
    • 대기
    • /
    • 제21권1호
    • /
    • pp.69-83
    • /
    • 2011
  • The synoptic condition of clear-air turbulence (CAT) events occurred over South Korea is investigated, using the Regional Data Assimilation and Prediction System (RDAPS) data obtained from the Korea Meteorological Agency (KMA) and pilot reports (PIREPs) collected by Korea Aviation Meteorological Agency (KAMA) from 1 Dec. 2003 to 30 Nov. 2008. Throughout the years, strong subtropical jet stream exists over the South Korea, and the CAT events frequently occur in the upper-level frontal zone and subtropical jet stream regions where strong vertical wind shears locate. The probability of the moderate or greater (MOG)-level turbulence occurrence is higher in wintertime than in summertime, and high probability region is shifted northward across the jet stream in wintertime. We categorize the CAT events into three types according to their generation mechanisms: i) upper-level front and jet stream, ii) anticyclonically sheared and curved flows, and iii) breaking of mountain waves. Among 240 MOG-level CAT events reported during 2003-2008, 103 cases are related to jet stream while 73 cases and 25 cases are related to the anticyclonic shear flow and breaking of mountain wave, respectively.

영광 해상풍력단지 발전량 예측에 관한 연구 (The Research on the Yeonggwang Offshore Wind Farm Generated Energy Prediction)

  • 정문선;문채주;정권성;최만수;장영학
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.33-41
    • /
    • 2012
  • As the wind farms in large scale demand enormous amount of construction cost, minimizing the economic burden is essential and also it is very important to measure the wind resources and forecast annual energy production correctly to judge the economic feasibility of the proposed site by way of installing a Met mast at or nearby the site. Wind resources were measured by installing a 80[m] high Met mast at WangdeungYeo Island to conduct the research incorporated in this paper and offshore wind farm was designed using WindPRO. Wind farm of 100[MW] was designed making use of 3 and 4.5[MW] wind generator at the place selected to compare their annual energy production and capacity factor applying the loss factor of 10[%] and 20[%] respectively to each farm. As a result, 336,599[MWh] was generated by applying 3[MW] wind generator while 358,565 [MWh] was produced by 4.5[MW] wind generator. Difference in the energy production by 3[MW] generator was 33,660 [MWh] according to the loss factor with the difference in its capacity factor by 3.8[%]. On the other hand, 23 units of 4.5 [MW] wind generators showed the difference of annual energy production by 35,857 [MWh] with 4.0[%] capacity factor difference.

Research on aerodynamic force and structural response of SLCT under wind-rain two-way coupling environment

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Wind and Structures
    • /
    • 제29권4호
    • /
    • pp.247-270
    • /
    • 2019
  • Wind-resistant design of existing cooling tower structures overlooks the impacts of rainfall. However, rainstorm will influence aerodynamic force on the tower surface directly. Under this circumstance, the structural response of the super-large cooling tower (SLCT) will become more complicated, and then the stability and safety of SLCT will receive significant impact. In this paper, surrounding wind fields of the world highest (210 m) cooling tower in Northwest China underthree typical wind velocities were simulated based on the wind-rain two-way coupling algorithm. Next, wind-rain coupling synchronous iteration calculations were conducted under 9 different wind speed-rainfall intensity combinations by adding the discrete phase model (DPM). On this basis, the influencing laws of different wind speed-rainfall intensity combinations on wind-driving rain, adhesive force of rain drops and rain pressure coefficients were discussed. The acting mechanisms of speed line, turbulence energy strength as well as running speed and trajectory of rain drops on structural surface in the wind-rain coupling field were disclosed. Moreover, the fitting formula of wind-rain coupling equivalent pressure coefficient of the cooling tower was proposed. A systematic contrast analysis on its 3D distribution pattern was carried out. Finally, coupling model of SLCT under different working conditions was constructed by combining the finite element method. Structural response, buckling stability and local stability of SLCT under different wind velocities and wind speed-rainfall intensity combinations were compared and analyzed. Major research conclusions can provide references to determine loads of similar SLCT accurately under extremely complicated working conditions.