• Title/Summary/Keyword: Wind Turbulence

Search Result 614, Processing Time 0.025 seconds

Study on a Limit MPPT Controller for the Modelling of a Wind Power Generator (풍력발전기 모델링 및 리미트 MPPT제어기에 관한 연구)

  • Kang, Ju-Sung;Koh, Kang-Hoon;Choi, Kwang-Ju;Park, Jae-Yoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.53-59
    • /
    • 2007
  • Now, the study is activity that the energy market depending on a fossil fuel tend to change different way. In middle of the study compositive use of renewable energy(fuel cell and wind power, solar cell, etc.) is dispersion power system which concern is increasing. But in the case of generation of electric wind power system is changeable to be turbulence and wind and win speed are changeable in several seconds, so making the best of wind energy the MPPT that role in this case is important. In this paper suggest a MPPT which is making a use of information of wind speed and turning speed, windmill, electric power but it is simpler than former way. We could verify that a proposed controller working at the highest point of electric power when wind speed is regular speed and changable speed through the simulation.

Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part II: Model-II

  • Kim, Junbae;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.213-225
    • /
    • 2020
  • Floating Offshore Wind Turbines (FOWT) installed in the deep sea regions where stable and strong wind flows are abundant would have significantly improved energy production capacity. When designing FOWT, it is essential to understand the stability and motion performance of the floater. Water tank model tests are required to evaluate these aspects of performance. This paper describes a model test and numerical simulation for a 750-kW semi-submersible platform wind turbine model-II. In the previous model test, the 750-kW FOWT model-I suffered slamming phenomena from extreme wave conditions. Because of that, the platform freeboard of model-II was increased to mitigate the slamming load on the platform deck structure in extreme conditions. Also, the model-I pitch Response Amplitude Operators (RAO) of simulation had strong responses to the natural frequency region. Thus, the hub height of model-II was decreased to reduce the pitch resonance responses from the low-frequency response of the system. Like the model-I, 750-kW FOWT model-II was built with a 1/40 scale ratio. Furthermore, the experiments to evaluate the performance characteristics of the model-II wind turbine were executed at the same location and in the same environment conditions as were those of model-I. These tests included a free decay test, and tests of regular and irregular wave conditions. Both the experimental and simulation conditions considered the blade rotating effect due to the wind. The results of the model tests were compared with the numerical simulations of the FOWT using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code from the National Renewable Energy Laboratory (NREL).

Retrieval and Quality Assessment of Atmospheric Winds from the Aircraft-Based Observation Near Incheon International Airport, Korea (인천 공항 주변 고해상도 항공기 추적 정보 기반의 바람 관측자료 생산 및 품질 검증)

  • Kim, Jeongmin;Kim, Jung-Hoon
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.323-340
    • /
    • 2022
  • We analyzed the high-resolution wind data of Aircraft-Based Observation from the Mode-Selective Enhanced Surveillance (Mode-S EHS) data in Korea. For assessment of its quality, the Mode-S wind data was compared with the ECMWF ReAnalysis 5 (ERA5) reanalysis and Aircraft Meteorological Data Relay (AMDAR) data for more than 3-months from 7 May 2021 to 24 August 2021 near Incheon International Airport, Korea. Considering that the AMDAR reports are not provided by all commercial aircraft, total number of the Mode-S derived wind data with a second sampling rate was about twice larger than that of available AMDAR wind data. After the quality control procedures by removing erroneous samples, it was found that the root mean square errors (RMSEs) of the Mode-S retrieved winds are similar to that from the AMDAR winds. In particular, between 550 and 650 hPa levels, RMSE of the Mode-S (AMDAR) zonal wind against ERA5 data was about 2.3 m s-1 (1.9 m s-1), and those increased to 3.3 m s-1 (2.4 m s-1) in 200~500 hPa levels. A similar trend was found in the meridional wind, but a distinct positive mean bias of 2.16 m s-1 was observed between 875 and 1,000 hPa levels. Winds retrieved from the Mode-S also showed a good agreement directly with AMDAR data. As the Mode-S provides a large amount of data with a reliable quality, it can be useful for both data assimilation in the numerical weather prediction model and situational awareness of wind and turbulence for aviation safety in Korea.

Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine

  • Ke, Shitang;Dong, Yifan;Zhu, Rongkuan;Wang, Tongguang
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.433-450
    • /
    • 2020
  • The strong turbulence characteristic of typhoon not only will significantly change flow field characteristics surrounding the large-scale wind turbine and aerodynamic force distribution on surface, but also may cause morphological evolution of coast dune and thereby form sand storms. A 5MW horizontal-axis wind turbine in a wind power plant of southeastern coastal areas in China was chosen to investigate the distribution law of additional loads caused by wind-sand coupling movement of coast dune at landing of strong typhoons. Firstly, a mesoscale Weather Research and Forecasting (WRF) mode was introduced in for high spatial resolution simulation of typhoon "Megi". Wind speed profile on the boundary layer of typhoon was gained through fitting based on nonlinear least squares and then it was integrated into the user-defined function (UDF) as an entry condition of small-scaled CFD numerical simulation. On this basis, a synchronous iterative modeling of wind field and sand particle combination was carried out by using a continuous phase and discrete phase. Influencing laws of typhoon and normal wind on moving characteristics of sand particles, equivalent pressure distribution mode of structural surface and characteristics of lift resistance coefficient were compared. Results demonstrated that: Compared with normal wind, mesoscale typhoon intensifies the 3D aerodynamic distribution mode on structural surface of wind turbine significantly. Different from wind loads, sand loads mainly impact on 30° ranges at two sides of the lower windward region on the tower. The ratio between sand loads and wind load reaches 3.937% and the maximum sand pressure coefficient is 0.09. The coupling impact effect of strong typhoon and large sand particles is more significant, in which the resistance coefficient of tower is increased by 9.80% to the maximum extent. The maximum resistance coefficient in typhoon field is 13.79% higher than that in the normal wind field.

Viscous Flow Analysis around a Wind Turbine Blade with End Plate and Rake (풍력터빈 날개의 끝판과 레이크 효과에 대한 점성유동장 해석)

  • Kim, Ju-In;Kim, Wu-Joan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.273-279
    • /
    • 2011
  • Turbulent flow analysis around a wind turbine blade was performed to evaluate the power performance of offshore wind turbine. Fluent package was utilized to solve the Reynolds-averaged Navier-Stokes equations in non-inertial rotating coordinates. The realizable k-$\varepsilon$ model was used for turbulence closure and the grid system combining structured and unstructured grids was generated. In the first, lift and drag forces of 2-D foil section were calculated and compared with existing experimental data for the validation. Then torque and thrust of the wind turbine blade having NACA 4-series sections were calculated with fixed pitch angle and rpm. Tip speed ratio was varied by changing wind speed. In the next, three kinds of end plate were attached at the tip of blade in order to increase the power of the wind turbine. Among them the end plate attached at the suction side of the blade was found to be most effective. Furthermore, performance analysis with tilt angle and rake was also performed.

Evaluation of Wind Force Coefficients of a Box-Type Girder Bridge with Noise Barriers (방음벽의 유무에 따른 박스형 거더교의 풍력계수 평가)

  • Jeong, Seung Hwan;Lee, Youngki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.627-634
    • /
    • 2018
  • In the study, computational fluid dynamics analysis was performed to estimate wind force coefficients for a box-type concrete girder bridge under the influence of wind. The drag, lift and pitching moment coefficients were obtained for the bridge section without noise barrier and compared with those of the bridge section with noise barriers of various heights. The shear stress transport $k-{\omega}$ turbulence model was employed to estimate the wind force coefficients, and the contribution of the friction drag force to the total drag force was investigated. It was found from the study that the drag force coefficients increased as the height of noise barrier increased when a wind blew horizontally, and that the contribution of the friction drag force was highest for the bridge section without noise barrier. It is concluded that the impact of the height of noise barriers should be considered in the design of bridges, and the friction force played an important role in evaluating wind forces on bridges.

Investigation of Turbulent Flow Effect in Segmented Arc Heater (아크히터 내부의 난류 효과에 대한 고찰)

  • Lee, Jeong-Il;Kim, Kyu-Hong;Kim, Chong-Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.1-8
    • /
    • 2005
  • Flows in segmented arc-heaters have been calculated for prediction of experimental operating condition or for analysis and design of arc-heater itself. Some researchers succeeded in calculating accurately inner flows of a arc-heater, but could not made mathematical models which satisfy various operating conditions for many arc-heaters. this study is forced on turbulence for the generality of mathematical model. Instead of algebraic turbulence models which are frequently used for calculating inner flow of arc-heater, two equation turbulent models are used. Prediction results agree well with experiment data and it was confirmed that $k-\varepsilon$ two equation turbulence model is appropriate for a flow in an arc heater throughout extensive numerical testing.

A Case Study on Near-Cloud Turbulence around the Mesoscale Convective System in the Korean Peninsula (한반도에서 발생한 중규모 대류계의 구름 주변 난류 발생 메커니즘 사례 연구)

  • Sung-Il Yang;Ju Heon Lee;Jung-Hoon Kim
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.153-176
    • /
    • 2024
  • At 0843 UTC 30 May 2021, a commercial aircraft encountered severe turbulence at z = 11.5 km associated with the rapid development of Mesoscale Convective System (MCS) in the Gyeonggi Bay of Korea. To investigate the generation mechanisms of Near-Cloud Turbulence (NCT) near the MCS, Weather Research and Forecasting model was used to reproduce key features at multiple-scales with four nested domains (the finest ∆x = 0.2 km) and 112 hybrid vertical layers. Simulated subgrid-scale turbulent kinetic energy (SGS TKE) was located in three different regions of the MCS. First, the simulated NCT with non-zero SGS TKE at z = 11.5 km at 0835 UTC was collocated with the reported NCT. Cloud-induced flow deformation and entrainment process on the downstream of the overshooting top triggered convective instability and subsequent SGS TKE. Second, at z = 16.5 km at 0820 UTC, the localized SGS TKE was found 4 km above the overshooting cloud top. It was attributed to breaking down of vertically propagating convectively-induced gravity wave at background critical level. Lastly, SGS TKE was simulated at z = 11.5 km at 0930 UTC during the dissipating stage of MCS. Upper-level anticyclonic outflow of MCS intensified the environmental westerlies, developing strong vertical wind shear on the northeastern quadrant of the dissipating MCS. Three different generation mechanisms suggest the avoidance guidance for the possible NCT events near the entire period of the MCS in the heavy air traffic area around Incheon International Airport in Korea.

A study of sedimentation processes in Seamangeum coastal area (새만금지구의 퇴적과정에 관한 연구)

  • Sin Mun-Seop;Yu Cheol-Ung;Kim Ik-Jung
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.73-76
    • /
    • 1997
  • The purpose of this study is to find sedimentation patterns variation in Saemangeum coastal sea region. Water circulations are calculated diagnostically from the observed water temperature and salinity data and wind data and tidal residual current. Three dimensional movements of injected particles due In currents, turbulence and sinking velocity are tracked by the Euler-lagrange method. Calculated sedimentation patterns of riverine material are highly similar to the observed ones.

  • PDF

Study on the Characteristic of the Surface Wind Field around Pusan Area (부산지역의 지표 바람장의 특성에 관한 연구)

  • 김유근;홍정혜
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.176-178
    • /
    • 2000
  • 대기경계층내에서의 흐름은 평균류, 난류(Turbulence) 그리고 파동(wave) 3가지로 분류되는데 수평적으로 수 ms$^{-1}$ 연직적으로 수 cms$^{-1}$의 평균류에 의해서 수중기, 운동량, 열, 오염물질의 수송이 일어나며 이것들은 난류에 의해서 연직적 수송이 일어 난다. 그리고 평균류의 시어(shear)나 평균류가 장애물을 만나면서 형성되는 파동에 의해서 운동량, 에너지 등의 수송이 이루어진다(Stull., 1988). (중략)

  • PDF