• Title/Summary/Keyword: Wind Turbine Systems

Search Result 347, Processing Time 0.024 seconds

Development of Fault Diagnostic Algorithm based on Spectrum Analysis of Acceleration Signal for Wind Turbine System (가속도 신호의 주파수 분석에 기반한 풍력발전 고장진단 알고리즘 개발)

  • Ahn, Sung-Ill;Choi, Seong-Jin;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.675-680
    • /
    • 2012
  • Wind energy is currently the fastest growing source of renewable energy used for electrical generation around the world. Wind farms are adding a significant amount of electrical generation capacity. The increase in the number of wind farms has led to the need for more effective operation and maintenance. CMS(Condition Monitoring System) can be used to aid plant operator in achieving these goals. Its aim is to provide operators with information regarding th e health of their machine, which in turn, can help them improve operation efficiency. In this work, wind turbine fault diagnostic algorithm which can diagnose the mass unbalance and aerodynamic asymmetry of the blades is proposed. Proposed diagnostic algorithm utilizes both FFT(Fast Feurier Transform) of the signal from accelerometers installed inside of nacelle and simple diagnostic logic. Furthermore, to verify the applicability of the proposed system, 3W small sized wind turbine system is tested and physical experiments are carried out.

Determining the Maximum Capacity of a Small Wind Turbine System Considering Live Loads of Buildings (건물의 활하중을 고려한 소형풍력발전시스템의 최대 설비용량 선정기법)

  • Lee, Yeo-Jin;Kim, Sung-Yul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.165-170
    • /
    • 2016
  • Due to environmental issues such as global warming, the reduction of greenhouse gas emissions has become an inevitable measure to be taken. Among others, the building sector accounts for 50% of total carbon dioxide emissions, which is significantly high. Therefore, in order to reduce carbon dioxide emissions of the buildings, improving the energy efficiency by utilizing wind power among renewable energy sources is recommended. In case of buildings in the planning stage, it is possible to take the load of wind power generation systems into consideration when determining installed capacity. Already completed buildings, however, should be connected to small wind electric systems according to the live loads of the buildings based on the architectural design criteria. In order to connect to a building that has already been completed, it is necessary to consider the load of the small wind electric system as well as the live load of building. In addition, we need to generate the maximum electricity possible by determining the maximum installed capacity in a small area. In this paper, we propose the method for determining maximum capacity for building integrated small wind electric systems, which takes into account the considerations associated with connecting small wind electric systems to completed buildings. This can be developed into a system linked to solar power, which makes it possible to improve the energy independence of the building. In addition, carbon dioxide reduction by improving energy efficiency is expected.

A New AC/DC Converter for the Interconnections between Wind Farms and HVDC Transmission Lines

  • Nouri, Soheil;Babaei, Ebrahim;Hosseini, Seyyed Hossein
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.592-597
    • /
    • 2014
  • In this paper, a new ac/dc converter is proposed for HVDC-connected wind farms. The proposed converter provides a suitable dc voltage for HVDC transmission systems. Each wind turbine is connected to two full bridge diode rectifiers. These rectifiers are connected to each other by three thyristors. Firing the thyristors at desired angles provides an adjustable dc voltage in the output of the converter. Simulation results show the efficiency of the proposed converter.

Modeling and Voltage Variation Simulation of a Permanent Magnetic Synchronous Generator Wind Turbine Systems (영구자석 동기형 풍력발전시스템 모델링 및 전압변동 시뮬레이션)

  • Kim, Hong-Woo;An, Hae-Joon;Jang, Gil-Soo;Kim, Sung-Soo;Ko, Hee-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.116-123
    • /
    • 2009
  • This study performs modelling and simulation of permanent magnetic synchronous generator wind turbine by using Matlab & Simulink. In simulation, change of wind velocity, change of load, and voltage decrease of infinite bus are performed. Through such simulation, different with wiring system that there is only existing load, this study can confirm problems and voltage changing characteristics, which can occur in distributed electric power that load and electric power is mixed and operated, especially, in interconnecting with wind power generation.

Rotor-floater-mooring coupled dynamic analysis of mono-column-TLP-type FOWT (Floating Offshore Wind Turbine)

  • Bae, Y.H.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.95-111
    • /
    • 2011
  • Increasing numbers of floating offshore wind turbines are planned and designed these days due to their high potential in massive generation of clean energy from water depth deeper than 50 m. In the present study, a numerical prediction tool has been developed for the fully-coupled dynamic analysis of FOWTs in time domain including aero-blade-tower dynamics and control, mooring dynamics, and platform motions. In particular, the focus of the present study is paid to the dynamic coupling between the rotor and floater and the coupled case is compared against the uncoupled case so that their dynamic coupling effects can be identified. For this purpose, a mono-column mini TLP with 1.5MW turbine for 80m water depth is selected as an example. The time histories and spectra of the FOWT motions and accelerations as well as tether top-tensions are presented for the given collinear wind-wave condition. When compared with the uncoupled analysis, both standard deviations and maximum values of the floater-responses/tower-accelerations and tether tensions are appreciably increased as a result of the rotor-floater dynamic coupling, which may influence the overall design including fatigue-life estimation especially when larger blades are to be used.

The Effect of Wind Turbine fe the Frequency of Isolated Systems (단독계통에서 풍력발전기의 주파수 영향 분석)

  • Hwang, Kyo-Ik;Chun, Yeong-Han
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.143-145
    • /
    • 2005
  • There has been increasing interest in the renewable energies. Wind energy is worldwide number one renewable energy from the installed capacity viewpoint. Most of the power systems utilizing wind energy are connected to other large systems. In such integrated systems, frequency control is not big issue. Rut the situation is different in isolated systems like Korean power system. It is important to assess appropriate capacity of wind power for our system, as it affects the system operation and control strategy. In this paper we made it clear the relationship among generator inertias, governor droop, system damping and wind energy capacity.

  • PDF

A Reliability Evaluation Model for the Power Devices Used in Power Converter Systems Considering the Effect of the Different Time Scales of the Wind Speed Profile

  • Ji, Haiting;Li, Hui;Li, Yang;Yang, Li;Lei, Guoping;Xiao, Hongwei;Zhao, Jie;Shi, Lefeng
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.685-694
    • /
    • 2016
  • This paper presents a reliability assessment model for the power semiconductors used in wind turbine power converters. In this study, the thermal loadings at different timescales of wind speed are considered. First, in order to address the influence of long-term thermal cycling caused by variations in wind speed, the power converter operation state is partitioned into different phases in terms of average wind speed and wind turbulence. Therefore, the contributions can be considered separately. Then, in regards to the reliability assessment caused by short-term thermal cycling, the wind profile is converted to a wind speed distribution, and the contribution of different wind speeds to the final failure rate is accumulated. Finally, the reliability of an actual power converter semiconductor for a 2.5 MW wind turbine is assessed, and the failure rates induced by different timescale thermal behavior patterns are compared. The effects of various parameters such as cut-in, rated, cut-out wind speed on the failure rate of power devices are also analyzed based on the proposed model.

Study on the Prediction of wind Power Generation Based on Artificial Neural Network (인공신경망 기반의 풍력발전기 발전량 예측에 관한 연구)

  • Kim, Se-Yoon;Kim, Sung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1173-1178
    • /
    • 2011
  • The power generated by wind turbines changes rapidly because of the continuous fluctuation of wind speed and direction. It is important for the power industry to have the capability to predict the changing wind power. In this paper, neural network based wind power prediction scheme which uses wind speed and direction is considered. In order to get a better prediction result, compression function which can be applied to the measurement data is introduced. Empirical data obtained from wind farm located in Kunsan is considered to verify the performance of the compression function.

Power Control and Dynamic Performance Analysis of a Grid-Interactive Wind/PV/BESS Hybrid System (계통연계형 풍력, 태양광 및 축전지 하이브리드 시스템의 출력제어 및 동특성 해석)

  • Kim, Seul-Ki;Jeon, Jin-Hong;Cho, Chang-Hee;Ahn, Jong-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.317-324
    • /
    • 2007
  • Most conventional hybrid systems using renewable energy sources have been applied for stand-alone operation, but Utility-interface may be an useful and viable option for hybrid systems. Grid-connected operation may have benefits such as reduced losses in power system distribution, utility support in demand side management, and peak load shaving. This paper addresses power control and dynamic performance of a grid-connected PV/wind/BESS hybrid system. At all times the PV way and the wind turbine are individually controlled to generate the maximum energy from given weather conditions. The battery energy storage system (BESS) charges or discharges the battery depending on energy gap between grid invertger generation and production from the PV and wind system. The BESS should be also controlled without too frequently repeated shifts in operation mode, charging or discharging. The grid inverter regulates the generated power injection into the grid. Different control schemes of the grid inverter are presented for different operation modes, which include normal operation, power dispatching, and power smoothing. Simulation results demonstrate that the effectiveness of the proposed power control schemes for the grid-interactive hybrid system.

Study on Artificial Neural Network Based Fault Detection Schemes for Wind Turbine System (풍력발전 시스템을 위한 인공 신경망 기반의 고장검출기법에 대한 연구)

  • Moon, Dae-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.603-609
    • /
    • 2012
  • Wind energy is currently the fastest growing source of renewable energy used for electrical generation around world. Wind farms are adding a significant amount of electrical generation capacity. The increase in the number of wind farms has led to the need for more effective operation and maintenance procedures. Condition Monitoring System(CMS) can be used to aid plant owners in achieving these goals. Its aim is to provide operators with information regarding the health of their machines, which in turn, can help them improve operational efficiency. In this work, systematic design procedure for artificial neural network based normal behavior model which can be applied for fault detection of various devices is proposed. Furthermore, to verify the design method SCADA(Supervisor Control and Data Acquisition) data from 850KW wind turbine system installed in Beaung port were utilized.