• Title/Summary/Keyword: Wind Turbine Rotor Blades

Search Result 94, Processing Time 0.023 seconds

The wind tunnel measuring methods for wind turbine rotor blades

  • Vardar, Ali;Eker, Bulent
    • Wind and Structures
    • /
    • v.7 no.5
    • /
    • pp.305-316
    • /
    • 2004
  • In this study, a wind tunnel, that has been developed for experiments of wind turbine rotor blades, has been considered. The deviations of the measurements have been examined after this wind tunnel had been introduced and the measurements on it had been explained. Two different wind turbine rotor blades miniatures have been used for getting better results from the experiments. The accuracy of measurements have been experimented three times repetitively and examined statistically. As a result, wind speed values which this type of wind tunnel and wind turbine rotors need for starting, wind speed in the tunnel, temperature and moisture values, the number of rotor's revolution, and the voltage that is produced in 102 ${\Omega}$ resistance and current values have been determined to be fixed by measurements used. This type of wind tunnel and wind turbine rotor' performance difference and the difference of revolution figures have been determined to be fixed by measurements used.

Analysis of Flows around the Rotor-Blades as Rotating Body System of Wind Turbine (풍력 발전기의 Rotor-Blades 회전체 시스템 공력 해석)

  • Kim, Don-Jean;Kwag, Seung-Hyun;Lee, Kyong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.25-31
    • /
    • 2009
  • The most important component of wind turbine is rotor blades. The developing method of wind turbine was focused on design of rotor blade. By the way, the design of a rotating body is more decisive process in order to adjust the performance of wind turbine. For instance, the design allows the designer to specify the wind characteristics derived by topographical map. The iterative solver is then used to adjust one of the selected inputs so that the desired rotating performance which is directly related to power generating capacity and efficiency is achieved. Furthermore, in order to save the money for manufacturing the rotor blades and to decrease the maintenance fee of wind power generation plant, while decelerating the cut-in speed of rotor. Therefore, the design and manufacturing of rotating body is understood as a substantial technology of wind power generation plant development. The aiming of this study is building-up the profitable approach to designing of rotating body as a system for the wind power generation plant. The process was conducted in two steps. Firstly, general designing and it’s serial testing of rotating body for voltage measurement. Secondly, the serial test results above were examined with the CFD code. Then, the analysis is made on the basis of amount of electricity generated by rotor-blades and of cut-in speed of generator.

An Investigation on Thrust Properties under Wind Shear for an On-Shore 2 MW Wind Turbine (윈드 쉬어에 의한 2MW급 육상용 풍력터빈의 추력 특성 확인)

  • Lim, Chae Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.14-18
    • /
    • 2016
  • Multi-MW wind turbines have very large blades over 40~50 m in length. Some factors like wind shear and tower shadow make an effect on asymmetric loads on the blades. Larger asymmetric loads are produced as the length of blade is getting longer. In this paper, a 2 MW on-shore wind turbine is considered and variations of thrust on 3 blades and rotor hub under wind shear are calculated by using a commercial Bladed S/W and dynamic properties of the thrust variations are investigated. It is shown that the amplitude of the asymmetric thrust on each blade under wind shear is getting larger as the wind speed increases, the frequency of the thrust variation on each blade is same as the one of rotor speed, and the frequency of the thrust variation at rotor hub is 3 times as high as the one of rotor speed.

Mechanical Loads Analysis and Control of a MW Wind Turbine (MW 규모 풍력 터빈의 기계적 하중 특성 해석 및 제어)

  • Nam, Yoon-Su;Choi, Han-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.26-33
    • /
    • 2010
  • A multi-MW wind turbine is a huge mechanical structure, of which the rotor diameter is more or less than 100 m. Rotor blades experience unsymmetric mechanical loads caused by the interaction of incoming wind with the tower and wind shear effect. These mechanical loads are transferred to the entire structure of the wind turbine and are known as the major reasons for shortening the life span of the wind turbine. Therefore, as the size of wind turbine gets bigger, the mitigation of mechanical loads becomes more important issue in wind turbine control system design. In this paper, a concept of an individual pitch control(IPC), which minimizes the mechanical loads of rotor blades, is introduced, and simulation results using IPC are discussed.

Numerical Study of Rotor-Tower Interaction for Horizontal Axis Wind Turbine (수평축 풍력터빈의 로터-타워 공력 간섭현상에 대한 수치적 연구)

  • Kim, Jae-Won;Yu, Dong-Ok;Kwon, Oh-Joon
    • Journal of Wind Energy
    • /
    • v.2 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • In the present study, numerical unsteady simulations of the NREL Phase VI wind turbine in downwind operation conditions were conducted to investigate rotor-tower interaction. The calculations were performed using an unstructured mesh, incompressible Reynolds-averaged Navier-Stokes flow solver. To capture the unsteady effects associated with the tower shadow between the rotor blades and the tower, the wind turbine was modelled including the rotor, tower, hub, and nacelle. The present results generally showed good agreements with available experimental data. At the lowest wind speed, the pressure distribution was characterized by a complete collapse of the suction peak on the blade when the blade passes through the tower wake. It was found that unsteady effects play a significant role in the response of the blades.

Thrust force and base bending moment acting on a horizontal axis wind turbine with a high tip speed ratio at high yaw angles

  • Bosnar, Danijel;Kozmar, Hrvoje;Pospisil, Stanislav;Machacek, Michael
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.471-485
    • /
    • 2021
  • Onshore wind turbines may experience substantially different wind loads depending on their working conditions, i.e. rotation velocity of rotor blades, incoming freestream wind velocity, pitch angle of rotor blades, and yaw angle of the wind-turbine tower. In the present study, aerodynamic loads acting on a horizontal axis wind turbine were accordingly quantified for the high tip speed ratio (TSR) at high yaw angles because these conditions have previously not been adequately addressed. This was analyzed experimentally on a small-scale wind-turbine model in a boundary layer wind tunnel. The wind-tunnel simulation of the neutrally stratified atmospheric boundary layer (ABL) developing above a flat terrain was generated using the Counihan approach. The ABL was simulated to achieve the conditions of a wind-turbine model operating in similar inflow conditions to those of a prototype wind turbine situated in the lower atmosphere, which is another important aspect of the present work. The ABL and wind-turbine simulation length scale factors were the same (S=300) in order to satisfy the Jensen similarity criterion. Aerodynamic loads experienced by the wind-turbine model subjected to the ABL simulation were studied based on the high frequency force balance (HFFB) measurements. Emphasis was put on the thrust force and the bending moment because these two load components have previously proven to be dominant compared to other load components. The results indicate several important findings. The loads were substantially higher for TSR=10 compared to TSR=5.6. In these conditions, a considerable load reduction was achieved by pitching the rotor blades. For the blade pitch angle at 90°, the loads were ten times lower than the loads of the rotating wind-turbine model. For the blade pitch angle at 12°, the loads were at 50% of the rotating wind-turbine model. The loads were reduced by up to 40% through the yawing of the wind-turbine model, which was observed both for the rotating and the parked wind-turbine model.

Flutter study of flapwise bend-twist coupled composite wind turbine blades

  • Farsadi, Touraj;Kayran, Altan
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.267-281
    • /
    • 2021
  • Bending-twisting coupling induced in big composite wind turbine blades is one of the passive control mechanisms which is exploited to mitigate loads incurred due to deformation of the blades. In the present study, flutter characteristics of bend-twist coupled blades, designed for load alleviation in wind turbine systems, are investigated by time-domain analysis. For this purpose, a baseline full GFRP blade, a bend-twist coupled full GFRP blade, and a hybrid GFRP and CFRP bend-twist coupled blade is designed for load reduction purpose for a 5 MW wind turbine model that is set up in the wind turbine multi-body dynamic code PHATAS. For the study of flutter characteristics of the blades, an over-speed analysis of the wind turbine system is performed without using any blade control and applying slowly increasing wind velocity. A detailed procedure of obtaining the flutter wind and rotational speeds from the time responses of the rotational speed of the rotor, flapwise and torsional deformation of the blade tip, and angle of attack and lift coefficient of the tip section of the blade is explained. Results show that flutter wind and rotational speeds of bend-twist coupled blades are lower than the flutter wind and rotational speeds of the baseline blade mainly due to the kinematic coupling between the bending and torsional deformation in bend-twist coupled blades.

Structural Analysis and Proof Test of Composite Rotor Blades for Wind Turbine (풍력발전기용 복합재 블레이드의 구조해석 및 인증시험)

  • Park, Sun-Ho;Han, Kyung-Seop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.299-302
    • /
    • 2008
  • GFRP based composite rotor blades were developed for 750kW & 2MW wind turbines. The blade sectional geometry was designed to have a general shell-spar and shear web structure. For verifying the structural safety under all relevant extreme loads specified in the GL guidelines, the structural analysis of the rotor blades was performed using commercial FEM codes. The static load carrying capacity, blade tip deflections and natural frequencies were evaluated to satisfy the strength and stability requirements. Full-scale proof tests of rotor blades were carried out with optical fiber sensors for real-time condition monitoring. Finally, the prototype of each rotor blade passed all proof tests for GL certification.

  • PDF

Prediction Method for Trailing-edge Serrated Wind Turbine Noise (풍력발전기 톱니형 뒷전 블레이드 소음 예측 기법)

  • Han, Dongyeon;Choi, Jihoon;Lee, Soogab
    • New & Renewable Energy
    • /
    • v.16 no.2
    • /
    • pp.1-13
    • /
    • 2020
  • The reduction of noise from wind turbines has been studied using various methods. Some examples include controlling wind turbine blades, designing low-noise-emitting wind turbine blades, and using trailing-edge serrations. Among these methods, serration is considered an effective noise reduction method. Various studies have aimed to understand the effects of trailing-edge serration parameters. Most studies, however, have focused on fixed-wing concepts, and few have analyzed noise reduction or developed a prediction method for rotor-type blades. Herein, a noise prediction method, composed of two noise prediction methods for a wind turbine with trailing-edge serrations, is proposed. From the flow information obtained by an in-house program (WINFAS), the noise from non-serrated blades is calculated by turbulent ingestion noise and airfoil self-noise prediction methods. The degree of noise reduction caused by the trailing-edge serrations is predicted in the frequency domain by Lyu's method. The amount of noise reduction is subtracted from the predicted result of the non-serrated blade and the total reduction of the noise from the rotor blades is calculated.

Evalulation of the Tower Fatigue Loads by Ice Formation on Rotor Blades (로터 블레이드 결빙에 의한 타워 피로하중 평가)

  • Kim, Jeong-Gi;Park, Sun-Ho;Bang, Jo-Hyug;Jung, Jong-Hun;Kim, Sang-Dug;Ryu, Ji-Yune
    • Journal of Wind Energy
    • /
    • v.5 no.1
    • /
    • pp.43-49
    • /
    • 2014
  • Primarily, tower loads of a wind turbine arise from aerodynamic effect and a top head mass. But sometime asymmetric loads of rotor also affect on the tower loads. Especially ice formation on two blades out of three causes the asymmetric loads, because the ice formation on blades lead to large rotating mass imbalance. This rotating mass imbalance of rotor affects tower fatigue loads. So design load cases of ice formation on blade should be considered in the fatigue design loads of the tower according to GL guideline 2010. This paper describes the change of tower fatigue loads following increase of tower height in the condition of ice formation. Finally, the optimal operation strategy is examined in order to reduce tower fatigue design loads.