• 제목/요약/키워드: Wind Turbine Generator System

검색결과 352건 처리시간 0.033초

Studies on a Wind Turbine Generator System using a Shaft Generator System

  • Tatsuta Fujio;Tsuji Toshiyuki;Emi Nobuharu;Nishikata Shoji
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.177-184
    • /
    • 2006
  • In this paper a new dc-link type wind turbine generator system using a shaft generator system, which is widely used for power sources in a ship, is proposed. The basic configuration of the proposed wind turbine generating system is first explained. And the equations expressing the system are derived. Then the steady-state characteristics of the generating system are discussed. We use an experimental system that can simulate the characteristics of a wind turbine in this study, because it is hard to operate an actual wind turbine in a laboratory. In addition, the transient responses of this system are investigated when the velocity of the wind is changed. It is shown that experimental results were very close to the simulated ones, supporting the usefulness of the theory.

풍력기반 하이브레드 풍력발전기의 원격 정전압 변동률 분석 장치에 관한 연구 (A Study of the Analysis System of Remote Control a Voltage Fluctuation of a Based Wind Turbine)

  • 장미혜;선민영;이종조;임재규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.456-459
    • /
    • 2009
  • we studied a data acquisition and control system of a wind turbine for measuring and controlling a voltage fluctuations of a wind turbine system. The wind turbine system is installed out control area. So, it is so important for supervising to wind turbine of a maintenance, wind speed, optical resources wind turbine output, wind speed, wind direction, over voltage of a generator. This system can be supplied a data of over voltage, under voltage, voltage fluctuations of a wind turbine for controlling an EMS : Energy Management System or a SCADA : Supervision Control and Data Acquisition at a constitute of a wind farm. The of voltage fluctuation system of a wind turbine is improving an electric power supply power quality of a distribution line and unspecified individuals of used wind turbine.

  • PDF

Simulink에서 계통연계 풍력발전시스템의 전압변동 시뮬레이션 (Simulation for Voltage Variations of a Grid-connected Wind Turbine Generation System by Simulink)

  • 안덕근;노경수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권11호
    • /
    • pp.589-595
    • /
    • 2004
  • This paper presents a modeling and simulation of a grid-connected wind turbine generation system with respect to wind variations, starting of large induction motor and three-phase fault in the system, and investigates voltage variations of the system for disturbances. It describes the modeling of the wind turbine system including the drive train model, induction generator model, and grid-interface model on MATLAB/Simulink. The simulation results show the variation of the generator torque, the generator rotor speed, the pitch angle, terminal voltage, system voltage, fault current, and real/reactive power output, etc. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction for wind speed variations, starting of a large induction motor causes a voltage sag due to a large starting current, and a fault on the system influences on the output of the wind turbine generator.

연계계통의 강인성에 따른 이중여자유도발전 풍력시스템의 동특성 해석 (Analysis of Dynamic Characteristics for Doubly-Fed Induction Generator in Wind Turbine System based on Stiffness of Linked System)

  • 김태호;노경수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.458_459
    • /
    • 2009
  • This paper analyzes the dynamic characteristics for doubly-fed induction generator(DFIG) in wind turbine system. This paper presents a modeling and simulation of a grid-connected wind turbine generation system for dynamics analysis on MATLAB/Simulink, and analyzes the responses DFIG wind turbine system for stiffness of linked system. Simulation results show the variations of generator's active/reactive output, terminal voltage, fault current, etc.

  • PDF

대형 풍력발전기용 소형 모터-발전기 시스템 설계 (Design of a Small-Scale Motor-Generator System for a Large Wind Turbine)

  • 임채욱
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.48-52
    • /
    • 2017
  • Small-scale motor-generator sets have been used in laboratories for verification of real large wind turbines whose rated power are more than 1 MW. In this paper, a result of designing a small-scale motor-generator system, which is composed of motor, gear box, flywheel, and generator, is presented in the aspect of speed response. Design objective is to make a small-scale motor-generator system have the same time constant and optimal tip speed ratio region as a real MW wind turbine. A small-scale 3.5 kW motor-generator system for emulating response of a 2 MW wind turbine is considered and designed.

Experimental Assessment with Wind Turbine Emulator of Variable-Speed Wind Power Generation System using Boost Chopper Circuit of Permanent Magnet Synchronous Generator

  • Tammaruckwattana, Sirichai;Ohyama, Kazuhiro;Yue, Chenxin
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.246-255
    • /
    • 2015
  • This paper presents experimental results and its assessment of a variable-speed wind power generation system (VSWPGS) using permanent magnet synchronous generator (PMSG) and boost chopper circuit (BCC). Experimental results are obtained by a test bench with a wind turbine emulator (WTE). WTE reproduces the behaviors of a windmill by using servo motor drives. The mechanical torque references to drive the servo motor are calculated from the windmill wing profile, wind velocity, and windmill rotational speed. VSWPGS using PMSG and BCC has three speed control modes for the level of wind velocity to control the rotational speed of the wind turbine. The control mode for low wind velocity regulates an armature current of generator with BCC. The control mode for middle wind velocity regulates a DC link voltage with a vector-controlled inverter. The control mode for high wind velocity regulates a pitch angle of the wind turbine with a pitch angle control system. The hybrid of three control modes extends the variable-speed range. BCC simplifies the maintenance of VSWPGS while improving reliability. In addition, VSWPGS using PMSG and BCC saves cost compared with VSWPGS using a PWM converter.

10 kW급 유체 토크 컨버터를 이용한 풍력발전시스템에 관한 연구 (A Study of the 10 kW-Level Wind Turbine System by Controlled Hydraulic Torque Converter)

  • 장미혜;김동용
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.14-17
    • /
    • 2009
  • In this paper, A generator of existing vertical type wind turbine system is connected to bevel gear. But, the generator of proposed wind turbine system is connected to Hydraulic torque converter. In case of the proposed wind turbine system, is possible to make torque transmission long distance, set up generator somewhere in between the tower or the ground as well as, nacelle weight can be greatly down. Lightweight of nacelle exactly wind direction tracking can be easily also, cost down of established frame structure and generator setting, maintenance, easy and improvement of system stability.

DS 알고리즘을 이용한 마이크로 그리드 최적운영기법 (Optimal Operation Method of Microgrid System Using DS Algorithm)

  • 박시나;이상봉
    • 조명전기설비학회논문지
    • /
    • 제29권5호
    • /
    • pp.34-40
    • /
    • 2015
  • This paper presents an application of Differential Search (DS) meta-heuristic optimization algorithm for optimal operation of micro grid system. DS algorithm has the benefit of high convergence rate and precision compared to other optimization methods. The micro grid system consists of a wind turbine, a diesel generator, and a fuel cell. The simulation is applied to micro grid system only. The wind turbine generator is modeled by considering the characteristics of variable output. One day load data which is divided every 20 minute and wind resource for wind turbine generator are used for the study. The method using the proposed DS algorithm is easy to implement, and the results of the convergence performance are better than other optimization algorithms.

풍력-디젤 하이브리드 발전시스템 모델링에 관한 연구 (Modeling of Hybrid Generation System with Wind Turbine and Diesel Generator)

  • 김재언
    • 한국산학기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.1806-1813
    • /
    • 2012
  • 본 논문은 도서지역에서 현실적으로 가장 간단히 적용될 수 있는 풍력-디젤 하이브리드 발전시스템의 모델링 방법을 제시하였다. 모델링 대상으로는 풍력발전기는 농형유도발전기를, 디젤발전기는 동기발전기를 대상으로 하였고, 각각에 대한 파라미터 설정과 제어기의 모델링은 현재 제작 및 판매되고 있는 소용량급들에 대한 자료수집과 분석을 통하여 도출된 기준값에 근거하였다. 제안된 풍력-디젤 하이브리드 발전시스템 모델링방법의 타당성을 입증하기 위하여 국내 낙도지역을 대상으로 하여 모델링하고, 그 결과를 시뮬레이션하여 고찰하였다.

이중여자 유도발전기를 이용한 가변속운전과 정속운전 풍력발전시스템의 운전특성 비교 (Comparison of Characteristics for Variable Operation using Doubly-fed Induction Generator and Fixed Speed Operation in Wind Turbine System)

  • 노경수;김태호
    • 전기학회논문지
    • /
    • 제58권7호
    • /
    • pp.1313-1320
    • /
    • 2009
  • This paper analyzes the steady-state operating characteristics of doubly-fed induction generator(DFIG) and fixed-speed induction generator(FSIG) in wind turbine system. It also presents a modeling and simulation of a grid-connected wind turbine generation system for dynamics analysis on MATLAB/Simulink, and compares the responses between DFIG and FSIG wind turbine systems with respect to wind speed variation, 3-phase fault and 1-phase ground fault of the network. Simulation results show the variations of generator's active/reactive output, rotor speed, terminal voltage, fault current, etc. Case studies demonstrate that DFIG illustrates better performance compared to FSIG.