• 제목/요약/키워드: Wind Speed Prediction

검색결과 321건 처리시간 0.026초

The Influence of Optical Porosity of Tree Windbreaks on Windward Wind Speed, Erosive Force and Sand Deposition

  • Dafa-Alla, M.D.;Al-Amin, Nawal K.N.
    • Journal of Forest and Environmental Science
    • /
    • 제32권2호
    • /
    • pp.212-218
    • /
    • 2016
  • The research was conducted windward of an irrigated Acacia amplicips Maslin windbreak established to protect As Salam Cement Plant from winds and moving sands. Two belts with approximate optical porosities of 50% and 20% were studied in River Nile State, Sudan. The research aimed at assessing the efficiency of the two belts in wind speed reduction and sand deposition. Research methods included: (i) estimation of optical porosity, (ii) measurements of windward wind speeds at a control and at distances of 0.5 h (h stands for windbreak height), 1 h and 2 h at two vertical levels of 0.25 h and 0.5 h, (iii) estimation of relative wind speeds at the three positions (distance and height) at windward and (iv) estimation of wind erosive forces and prediction of zones of sand deposition. Results show that while the two belts reduced windward wind speeds at the two levels for the three distances, belt II was more effective. Nearest sand deposition occurred at 2 h and 1h windward of belt II and belt I, respectively, at level 0.25 h. At level 0.5 h, sand was deposited only at 2 h windward of belt II and no sand deposition occurred windward of belt I. The study concludes that less porous windbreaks are more effective in reducing wind speed and in depositing sand in windward direction at a distance of not less than twice the belt height.

기상조건에 따른 부산지역 대기오염물질 농도변화와 예측에 관한 연구 (On the Prediction and Variation of Air Pollutants Concentration in Relation to the Meteorological Condition in Pusan Area)

  • 정영진;이동인
    • 한국대기환경학회지
    • /
    • 제14권3호
    • /
    • pp.177-190
    • /
    • 1998
  • The concentrations of air pollutants In large cities such as Pusan area have been increased every year due to the increasing of fuels consumption at factories and by vehicles as well as the gravitation of the population. In addition to the pollution sources, time and spatial variation of air pollutants concentration and meteorological factors have a great influence on the air pollution problem. Especially , its concentration is governed by wind direction, wind speed, precipitation, solar radiation, temperature, humidity and cloud amounts, etc. In this study, we have analyzed various data of meteorological factors using typical patterns of the air pressure to investigate how the concentration of air pollutants is varied with meteorological condition. Using the relationship between meteorological factors (air temperature, relative humidity, wind speed and solar radiation) and the concentration of air pollutants (SO2, O3) , experimental prediction formulas for their concentration were obtained. Therefore, these prediction formulas at each meteorological factor in a pressure pattern may be roughly used to predict the air pollutants concentration and contributed to estimate the variation of its value according to the weather condition in Pusan city.

  • PDF

국지앙상블시스템을 활용한 농경지 바람 및 강풍 예측 (Prediction of Agricultural Wind and Gust Using Local Ensemble Prediction System)

  • 강정혁;김건후;김규랑
    • 한국농림기상학회지
    • /
    • 제26권2호
    • /
    • pp.115-125
    • /
    • 2024
  • 바람은 농업환경에 주요한 영향을 주는 기상요소이며, 강풍은 낙과, 시설물 파괴 등의 피해를 일으킨다. 본 연구는 LENS에 물리모델을 적용해서 농경지에 활용될 수 있는 저고도 풍속예측을 진행하였다. 물리모델은 LOG, POW가 사용되었고 지표 변수에 대해서는 환경부지표와 MODIS 지표를 따로 적용하였다. 농촌진흥청에서 운영하는 2022년도 3 m 고도의 바람 및 강풍 자료를 수집하고 검증을 진행하였고 결과를 산점도, 상관계수, RMSE, NRMSE, TS로 나타내었다. 풍속비교 4가지 방법의 결과에서 모델이 관측보다 더 크게 예측하고 있음을 확인할 수 있었다. 강풍 기준 값이 3 m s-1 일 때, TS 가 약 0.65 정도로 나타났다. 결과는 RMSE와 NRMSE에서는 LOG_L, LOG_M, POW_L, POW_M 순으로 좋게 나타났고 상관계수와 TS에서는 역순으로 좋게 나타났다. 이러한 결과는 정해진 강풍 기준을 추가하여, 농경지 바람 및 강풍확률예측 연구에 도움이 될 것으로 기대된다.

돌풍계수 가이던스에 관한 연구 (Study on the guidance of the gust factor)

  • 박효순
    • 대기
    • /
    • 제14권3호
    • /
    • pp.19-28
    • /
    • 2004
  • In this study, two years Automatic Weather Station (AWS) data observed near the coast and islands are used to evaluate gust factors only when time averaged wind speed is higher than 5 ms. The gust factors are quite different in spatial and temporal domain according to analysis method. As the averaged time is increased, the gust factors are also increased. But the gust factors are decreased when wind speed is increased. It is because each wind speed is averaged one and a maximum wind is the greatest one for each time interval. The result from t-test is shown that all data are included within the 99% significance level. A sample standard deviation of ten minutes and one minute are 0.137~0.197, 0.067~0.142, respectively. Recently, the gust factor provided at the Korea Meteorological Administration (KMA) Homepage is calculated with one-hour averaged method. All though this method is hard to use directly for forecasting the strong wind over sea and coast, the result will be a great help to express Ocean Storm Flash in the Regional Meteorological Offices and the Meteorological Stations.

풍력자원평가를 위한 단순지형에서의 육상 기상탑 바람 데이터의 상호 적용 (Mutual Application of Met-Masts Wind Data on Simple Terrain for Wind Resource Assessment)

  • 손진혁;고경남;허종철;김인행
    • 동력기계공학회지
    • /
    • 제21권6호
    • /
    • pp.31-39
    • /
    • 2017
  • In order to examine if met-masts wind data can exchange each other for wind resource assessment, an investigation was carried out in Kimnyeong and Haengwon regions of Jeju Island. The two regions are both simple terrain and 4.31 km away from each other. The one-year wind speed data measured by 70 m-high anemometers of each met-mast of the two regions were analysed in detail. Measure-Correlate-Predict (MCP) method was applied to the two regions using the 10-year Automatic Weather System (AWS) wind data of Gujwa region for creating 10-year Wind Statistics by running WindPRO software. The two 10-year Wind Statistics were applied to the self-met mast point for self prediction of Annual Energy Production (AEP) and Capacity Factor (CF) and the each other's met mast point for mutual prediction of them. As a result, when self-prediction values were reference, relative errors of mutual prediction values were less than 1% for AEP and CF so that met masts wind data under the same condition of this study could exchange each other for estimating accurate wind resource.

도심지역에서의 풍속에 따른 $SO_2$ 농도변화 (The Variation of $SO_2$ Concentration According to Wind Speed in Urban Area)

  • 羅振均
    • 한국대기환경학회지
    • /
    • 제5권2호
    • /
    • pp.97-105
    • /
    • 1989
  • Recently, many studies on air quality prediction models have been performed to develope new ones. The purpose of the study is to obtain a method to predict $SO_2$ concentration simply in urban area using hour-to-hour meteorological data such as the wind speed, the incoming solar radiation, and the cloud coverages. The relationships between with speed and $SO_2$ concentrations are plotted in flgures. Predicted concentration curves are obtained for equation C=b/(1+au).

  • PDF

Optimization Calculations and Machine Learning Aimed at Reduction of Wind Forces Acting on Tall Buildings and Mitigation of Wind Environment

  • Tanaka, Hideyuki;Matsuoka, Yasutomo;Kawakami, Takuma;Azegami, Yasuhiko;Yamamoto, Masashi;Ohtake, Kazuo;Sone, Takayuki
    • 국제초고층학회논문집
    • /
    • 제8권4호
    • /
    • pp.291-302
    • /
    • 2019
  • We performed calculations combining optimization technologies and Computational Fluid Dynamics (CFD) aimed at reducing wind forces and mitigating wind environments (local strong winds) around buildings. However, the Reynolds Averaged Navier-stokes Simulation (RANS), which seems somewhat inaccurate, needs to be used to create a realistic CFD optimization tool. Therefore, in this study we explored the possibilities of optimizing calculations using RANS. We were able to demonstrate that building configurations advantageous to wind forces could be predicted even with RANS. We also demonstrated that building layouts was more effective than building configurations in mitigating local strong winds around tall buildings. Additionally, we used the Convolutional Neural Network (CNN) as an airflow prediction method alternative to CFD in order to increase the speed of optimization calculations, and validated its prediction accuracy.

남극 세종기지에서의 풍력자원 국소배치 민감도 분석 (Sensitivity Analysis of Wind Resource Micrositing at the Antarctic King Sejong Station)

  • 김석우;김현구
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.1-9
    • /
    • 2007
  • Sensitivity analysis of wind resource micrositing has been performed through the application case at the Antarctic King Sejong station with the most representative micrositing softwares: WAsP, WindSim and Meteodyn WT. The wind data obtained from two met-masts separated 625m were applied as a climatology input condition of micro-scale wind mapping. A tower shading effect on the met-mast installed 20m apart from the warehouse has been assessed by the CFD software Fluent and confirmed a negligible influence on wind speed measurement. Theoretically, micro-scale wind maps generated by the two met-data located within the same wind system and strongly correlated meteor-statistically should be identical if nothing influenced on wind prediction but orography. They, however, show discrepancies due to nonlinear effects induced by surrounding complex terrain. From the comparison of sensitivity analysis, Meteodyn WT employing 1-equation turbulence model showed 68% higher RMSE error of wind speed prediction than that of WindSim using the ${\kappa}-{\epsilon}$ turbulence model, while a linear-theoretical model WAsP showed 21% higher error. Consequently, the CFD model WindSim would predict wind field over complex terrain more reliable and less sensitive to climatology input data than other micrositing models. The auto-validation method proposed in this paper and the evaluation result of the micrositing softwares would be anticipated a good reference of wind resource assessments in complex terrain.

KARI 중형 아음속 풍동용 돌풍 발생기의 수치해석 (NUMERICAL ANALYSIS OF THE GUST GENERATOR FOR KARI LOW SPEED WIND TUNNEL)

  • 박영민;권기정;이상욱;김태욱
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.275-279
    • /
    • 2005
  • The vortex convection and induced flow field behind the KARI 3m x 4m LSWT gust generator was computed by using Computational Fluid Dynamics. For the accurate simulation of vortex convection, inviscid, laminar, Spalart-Allmars k-e and k-w turbulence models were tested with the NAL gust generator configuration and Spalart-Allmaras turbulence model was selected for the prediction of induced flow field behind the KARI LSWT gust generator. The wind tunnel test was also carried out at KARI LSWT and the results were compared with CFD prediction.

  • PDF

풍속 자료의 공간예측 (Spatial Prediction of Wind Speed Data)

  • 정승환;박만식;김기환
    • 응용통계연구
    • /
    • 제23권2호
    • /
    • pp.345-356
    • /
    • 2010
  • 오래 전부터 지속적으로 제기된 기후변화에 의한 문제들은 전 세계적인 문제점으로 언급되고 있다. 이러한 환경적 위기에 처한 각 나라들의 대처방법 중에 하나는 친환경적이고 지속가능한 발전 설비를 마련하기 위한 노력과 연구를 진행하고 있다는 것이다. 그중에서 풍력을 이용한 발전은 해외 선진국에서 오래 전부터 개발되어 발전해 오고 있고 우리나라 역시 최근에 풍력 발전에 관심을 갖고 기술개발에 노력을 기울이고 있다. 이러한 실정에서 우리나라 지역의 풍력에 대한 분석 및 예측은 천연자원의 적절한 이용이라는 관점에서 매우 중요한 연구라고 할 수 있겠다. 본 논문에서는 기상청에서 제공하는 풍속 측정 자료로 선형회귀모형에 근간을 둔 추정방법을 이용하여 주요도서지역을 제외한 남한지역의 공간적 특성을 파악할 수 있는 적절한 모형을 찾고 각 모형의 비교를 실시하였다. 이 결과를 바탕으로 남한지역의 풍속 예측지도를 구성하였다.