• 제목/요약/키워드: Wind Speed Prediction

검색결과 313건 처리시간 0.026초

해상풍력자원 예측을 위한 NCAR데이터 적용 타당성 연구 (Validation study of the NCAR reanalysis data for a offshore wind energy prediction)

  • 김병민;김현기;우재균;백인수;유능수
    • 한국태양에너지학회 논문집
    • /
    • 제32권1호
    • /
    • pp.1-7
    • /
    • 2012
  • Predictions of wind speed for six different near-shore sites were made using the NCAR (National Center for Atmospheric Research) wind data. The distances between the NCAR sites and prediction sites were varied between 40km and 150km. A well-known wind energy prediction program, WindPRO, was used. The prediction results were compared with the measured data from the AWS(Automated Weather Stations). Although the NCAR wind data were located far away from the AWS sites, the prediction errors were within 9% for all the cases. In terms of sector-wise wind energy distributions, the predictions were fairly close to the measurements, and the error in predicting main wind direction was less than $30^{\circ}$. This proves that the NCAR wind data are very useful in roughly estimating wind energy in offshore or near-shore sites where offshore wind farm might be constructed in Korea.

Power Ramp Rate를 이용한 풍력 발전량 예측모델 구축 (Building of Prediction Model of Wind Power Generationusing Power Ramp Rate)

  • 황미영;김성호;윤은일;김광득;류근호
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권1호
    • /
    • pp.211-218
    • /
    • 2012
  • 전 세계적으로 화석연료의 많이 사용이 증가되고 있으며 이로 인해 온실가스가 배출되어 지구 온난화와 환경오염이 심각해지고 있는 실정이다. 지구의 환경오염을 줄이기 위해서 무공해 청정에너지인 신재생에너지에 대한 관심이 증가되는 추세인데, 그중에서도 풍력발전은 환경오염 물질을 배출하지 않고, 자원량이 무한대이기 때문에 많은 관심을 받고 있다. 하지만, 풍력발전은 전력 생산량이 불규칙한 단점을 갖고 있어 풍력 터빈의 손상과 전력 생산량이 불규칙적인 문제를 야기하여 이러한 문제점을 보완하기 위해 풍력 발전량을 정확하게 예측하는 것이 중요하다. 풍력 발전량을 정확하게 예측하기 위해서 전력 생산량이 급증 또는 급감하는 것을 의미하는 ramp의 특성을 잘 활용해야 한다. 이 논문에서는 예측의 정확도를 높이기 위하여 다계층 신경망을 이용해 예측모델을 구축하였다. 구축된 예측모델은 흔히 사용되는 풍속, 풍향 속성뿐만 아니라 Power Ramp Rate(PRR) 속성까지 사용하였다. 구축된 풍력 발전량 예측모델은 앞서 말한 세 가지 속성을 모두 사용한 경우, 두 속성을 조합하여 사용한 경우 총 4가지 예측모델을 구축하였다. 구축된 4가지 예측모델을 성능평가 한 결과 PRR, 풍속, 풍향의 속성 모두를 사용한 예측모델의 예측 값이 풍력 터빈에서 관측된 관측 값에 가장 근접하였다. 그로 인해 PRR 속성을 사용하면 풍력 발전량의 예측 정확도를 향상 시킬 수 있었다.

풍력터빈 블레이드 공력설계 및 성능예측 (Aerodynamic Design and Performance Prediction of Wind Turbine Blade)

  • 김철완;조태환
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.677-681
    • /
    • 2011
  • 수직축 및 수평축 풍력터빈의 특성 및 공력성능예측 방법에 대해 고찰하였다. Darrieus형 수직축 풍력터빈은 블레이드에 유입되는 바람의 속도 및 받음각의 변화가 매우 심해 Dynamic Stall 현상이 발생하고 앞면에서 발생한 Wake가 후면 블레이드의 공력특성에 영향을 준다. 수평축은 BEMT를 활용하여 형상설계 및 성능예측이 가능하고 전산해석 및 풍동시험을 통해 공력성능예측이 수행되고 있다.

  • PDF

사고선박 예인력 계산을 위한 공기저항 간편 추정법 연구 (A Study on the Simplified Prediction Method of Air Resistance for Towing Force Calculation of Disabled Ships)

  • 김은찬;최혁진
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제17권3호
    • /
    • pp.198-204
    • /
    • 2014
  • 바다를 항해하는 선박은 수면 상부 선체가 공기저항을 받게 된다. 이 공기저항은 수면 상부 선체의 형상, 선속, 풍속 그리고 풍향의 영향을 받는다. 공기저항을 추정하는 실험적인 또는 통계적인 방법은 사고 선박의 예인력을 계산하는 중요한 절차 가운데 하나이다. 본 논문에서는 수면 상부 선체의 투영면적과 선속과 풍속과 풍향을 변수로 사용하여, 실험 또는 통계 분석 방법으로 공기저항을 간편하게 추정하는 방법을 보여주었다. 이 방법들은 기존의 사고선박 예인력 추정을 위한 전산 프로그램에 적용하였다.

대기 안정 상태에 따른 풍력 단지 소음 전파 예측 (Prediction of Wind Farm Noise with Atmospheric Stability)

  • 손은국;이승훈;전민우;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.42.2-42.2
    • /
    • 2011
  • Noise generated from wind turbines has been predicted by numerical methods. Sound pressure level(SPL) on the turbines is predicted after aerodynamic analysis is carried out by Wind Turbine Flow, Aeroacoustics and Structure analysis (WINFAS) code. The level of each panel of acoustic sphere is determined by the sum of tonal, turbulence ingestion and airfoil self noise. With the noise source database, the acoustic sphere, SPL on the ground is calculated using the model based on acoustic ray theory. The model has been designed to consider the effects on the condition of terrain and atmosphere. The variations of SPL on the ground occur not only because of the different source level but also because of the nonuniform distributions of the sound speed along the height. Hence, the profile of an effective sound speed which is the sum of the contribution of sound speed to a temperature gradient and a wind speed variation is used by the theory based on atmospheric stability. With the integrated numerical method, the prediction of sound propagation on the wind farm is carried out with the states of the atmospheric stability.

  • PDF

고해상도 규모상세화 수치자료 산출체계를 이용한 남한의 풍력기상자원 특성 분석 (Analyses of the Meteorological Characteristics over South Korea for Wind Power Applications Using KMAPP)

  • 윤진아;김연희;최희욱
    • 대기
    • /
    • 제31권1호
    • /
    • pp.1-15
    • /
    • 2021
  • High-resolution wind resources maps (maps, here after) with spatial and temporal resolutions of 100 m and 3-hours, respectively, over South Korea have been produced and evaluated for the period from July 2016 to June 2017 using Korea Meteorological Administration (KMA) Post Processing (KMAPP). Evaluation of the 10 m- and 80 m-level wind speed in the new maps (KMAPP-Wind) and the 1.5 km-resolution KMA NWP model, Local Data Assimilation and Prediction System (LDAPS), shows that the new high-resolution maps improves of the LDAPS winds in estimating the 10m wind speed as the new data reduces the mean bias (MBE) and root-mean-square error (RMSE) by 33.3% and 14.3%, respectively. In particular, the result of evaluation of the wind at 80 m which is directly related with power turbine shows that the new maps has significantly smaller error compared to the LDAPS wind. Analyses of the new maps for the seasonal average, maximum wind speed, and the prevailing wind direction shows that the wind resources over South Korea are most abundant during winter, and that the prevailing wind direction is strongly affected by synoptic weather systems except over mountainous regions. Wind speed generally increases with altitude and the proximity to the coast. In conclusion, the evaluation results show that the new maps provides significantly more accurate wind speeds than the lower resolution NWP model output, especially over complex terrains, coastal areas, and the Jeju island where wind-energy resources are most abundant.

풍향의 변동성에 따른 연간에너지 발전량의 변화 (Variation of AEP to wind direction variability)

  • 김현기;김병민;백인수;유능수;김현구
    • 한국태양에너지학회 논문집
    • /
    • 제31권5호
    • /
    • pp.1-8
    • /
    • 2011
  • In this study, we performed a sensitivity analysis to see how the true north error of a wind direction vane installed to a meteorological mast affects predictions of the annual-average wind speed and the annual energy production. For this study, two meteorological masts were installed with a distance of about 4km on the ridge in complex terrain and the wind speed and direction were measured for one year. Cross predictions of the wind speed and the AEP of a virtual wind turbine for two sites in complex terrain were performed by changing the wind direction from $-45^{\circ}$ to $45^{\circ}$with an interval of $5^{\circ}$. A commercial wind resource prediction program, WindPRO, was used for the study. It was found that the prediction errors in the AEP caused by the wind direction errors occurred up to more than 20% depending on the orography and the main wind direction at that site.

복잡 지형 지역에서의 KMAPP 지상 풍속 예측 성능 평가와 개선 (Evaluation and Improvement of the KMAPP Surface Wind Speed Prediction over Complex Terrain Areas)

  • 금왕호;이상현;이두일;이상삼;김연희
    • 대기
    • /
    • 제31권1호
    • /
    • pp.85-100
    • /
    • 2021
  • The necessity of accurate high-resolution meteorological forecasts becomes increasing in socio-economical applications and disaster risk management. The Korea Meteorological Administration Post-Processing (KMAPP) system has been operated to provide high-resolution meteorological forecasts of 100 m over the South Korea region. This study evaluates and improves the KMAPP performance in simulating wind speeds over complex terrain areas using the ICE-POP 2018 field campaign measurements. The mountainous measurements give a unique opportunity to evaluate the operational wind speed forecasts over the complex terrain area. The one-month wintertime forecasts revealed that the operational Local Data Assimilation and Prediction System (LDAPS) has systematic errors over the complex mountainous area, especially in deep valley areas, due to the orographic smoothing effect. The KMAPP reproduced the orographic height variation over the complex terrain area but failed to reduce the wind speed forecast errors of the LDAPS model. It even showed unreasonable values (~0.1 m s-1) for deep valley sites due to topographic overcorrection. The model's static parameters have been revised and applied to the KMAPP-Wind system, developed newly in this study, to represent the local topographic characteristics better over the region. Besides, sensitivity tests were conducted to investigate the effects of the model's physical correction methods. The KMAPP-Wind system showed better performance in predicting near-surface wind speed during the ICE-POP period than the original KMAPP version, reducing the forecast error by 21.2%. It suggests that a realistic representation of the topographic parameters is a prerequisite for the physical downscaling of near-ground wind speed over complex terrain areas.

ADF를 사용한 유전프로그래밍 기반 비선형 회귀분석 기법 개선 및 풍속 예보 보정 응용 (Improvement of Genetic Programming Based Nonlinear Regression Using ADF and Application for Prediction MOS of Wind Speed)

  • 오승철;서기성
    • 전기학회논문지
    • /
    • 제64권12호
    • /
    • pp.1748-1755
    • /
    • 2015
  • A linear regression is widely used for prediction problem, but it is hard to manage an irregular nature of nonlinear system. Although nonlinear regression methods have been adopted, most of them are only fit to low and limited structure problem with small number of independent variables. However, real-world problem, such as weather prediction required complex nonlinear regression with large number of variables. GP(Genetic Programming) based evolutionary nonlinear regression method is an efficient approach to attach the challenging problem. This paper introduces the improvement of an GP based nonlinear regression method using ADF(Automatically Defined Function). It is believed ADFs allow the evolution of modular solutions and, consequently, improve the performance of the GP technique. The suggested ADF based GP nonlinear regression methods are compared with UM, MLR, and previous GP method for 3 days prediction of wind speed using MOS(Model Output Statistics) for partial South Korean regions. The UM and KLAPS data of 2007-2009, 2011-2013 years are used for experimentation.

남극 장보고기지 주변 강풍사례 모의 연구 (A Numerical Simulation Study of Strong Wind Events at Jangbogo Station, Antarctica)

  • 권하택;김신우;이솔지;박상종;최태진;정지훈;김성중;김백민
    • 대기
    • /
    • 제26권4호
    • /
    • pp.617-633
    • /
    • 2016
  • Jangbogo station is located in Terra Nova Bay over the East Antarctica, which is often affected by individual storms moving along nearby storm tracks and a katabatic flow from the continental interior towards the coast. A numerical simulation for two strong wind events of maximum instantaneous wind speed ($41.17m\;s^{-1}$) and daily mean wind speed ($23.92m\;s^{-1}$) at Jangbogo station are conducted using the polar-optimized version of Weather Research and Forecasting model (Polar WRF). Verifying model results from 3 km grid resolution simulation against AWS observation at Jangbogo station, the case of maximum instantaneous wind speed is relatively simulated well with high skill in wind with a bias of $-3.3m\;s^{-1}$ and standard deviation of $5.4m\;s^{-1}$. The case of maximum daily mean wind speed showed comparatively lower accuracy for the simulation of wind speed with a bias of -7.0 m/s and standard deviation of $8.6m\;s^{-1}$. From the analysis, it is revealed that the each case has different origins for strong wind. The highest maximum instantaneous wind case is caused by the approach of the strong synoptic low pressure system moving toward Terra Nova Bay from North and the other daily wind maximum speed case is mainly caused by the katabatic flow from the interiors of Terra Nova Bay towards the coast. Our evaluation suggests that the Polar WRF can be used as a useful dynamic downscaling tool for the simulation and investigation of high wind events at Jangbogo station. However, additional efforts in utilizing the high resolution terrain is required to reduce the simulation error of high wind mainly caused by katabatic flow, which is received a lot of influence of the surrounding terrain.