• Title/Summary/Keyword: Wind Speed Data

Search Result 1,213, Processing Time 0.026 seconds

Characteristics of the soil loss and soil salinity of upland soil in saemangeum reclaimed land in western South Korea

  • Kim, Young Joo;Lee, Su Hwan;Ryu, Jin Hee;Oh, Yang Yeol;Lee, Jeong Tae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.316-316
    • /
    • 2017
  • The objective of this study is to estimate quantitatively soil salinity and soil loss at upland soils in agriculture land region in Saemangeum reclaimed land on the south Korea coasts. Soil loss and soil salinity are the most critical problem at reclaimed tidal saline soil in Korea. The several thematic maps of research area such as land cover map, topographic and soil maps, together with tabular precipitation data used for soil erosion and soil salinity calculation. Meteorological data were measured directly as air temperature, wind speed, solar radiation, and precipitation. The experiment was conducted 2% sloped lysimeter ($5.0m{\times}20.0m$) with 14 treatments and it were separated by low salinity division (LSD) and high salinity division (HSD) install. The cation content in ground water increased during time course, but in the case of land surface water the content was variable, and $K^+$ was lower than that of $Na^+$ and $Mg^{2+}$. At the LSD under rainproof condition, the salinity was directly proportional to soil water content, but at the HSD the tendency was no reversed. In condition of rainproof, the amount of soil salinity was higher at the HSD than at the LSD. Positive correlation was obtained between the soil water content and available phosphorous content at the rainfall division, but there was no significance at the surface soil of the rainproof division. Sodium adsorption ratio and anion contents in soil were repressed in the order of vinyl-mulching > non-mulching > bare field. According to the result of analyzing soil loss, soil loss occurred in a vinyl-mulching, a non-mulching and a bare field in size order, and also approximately 11.2 ton/ha soil loss happened on the reclaimed land area. The average soil loss amount by the unit area takes place in a non-mulching and bare field a lot. Our results indicate that soluble salt control and soil erosion are critical at reclaimed tidal saline soil and the results can provide some useful information for deciding management plans to reduce soil loss and salt damage for stable crop production and diverse utilization or cultivation could be one of the management options to alleviate salt damage at reclaimed tidal saline soil in Korea.

  • PDF

Influence of Land Use and Meteorological Factors for Evapotranspiration Estimation in the Coastal Urban Area (해안도시 지역에서 증발산량 산정에 토지이용도와 기상인자의 영향성)

  • Yang, Sung-Il;Kang, Dong-Hwan;Kwon, Byung-Hyuk;Kim, Byung-Woo
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.295-304
    • /
    • 2010
  • Actual evapotranspiration (AET) in the Suyeong-gu was estimated and correlations between AET and meteorological factors were analyzed. The study area was Suyeong-gu lay at the east longitude $129^{\circ}$ 05' 40" ~ 129$^{\circ}$ 08' 08" and north latitude $35^{\circ}$ 07' 59" ~ $35^{\circ}$ 11' 01". The Kumryun mountain, the Bae mountain, the Suyeong river and the Suyeong bay are located on west, north, northeaster and south side in the study area, respectively. AET was estimated using precipitation (P), potential evapotranspiration (PET) and plant-available water coefficient. Meteorological factors to estimate PET were air temperature, dewpoint temperature, atmospheric pressure, duration of sunshine and mean wind speed (MWS). PET and AET were estimated by a method of Allen et al. (1998) and Zhang et al. (2001), respectively. PET was the highest value (564.45 mm/yr) in 2002 year, while it was the lowest value (449.95 mm/yr) in 2003 year. AET was estimated highest value (554.14 mm/yr) in 2002 year and lowest value (427.91 mm/yr) in 2003 year. Variations of PET and AET were similar. The linear regression function of AET as PET using monthly data was AET=0.87$\times$PET+3.52 and coefficient of determination was high, 0.75. In order to analyze relationship between the evapotranspiration and meteorological factors, correlation analysis using monthly data were accomplished. Correlation coefficient of AET-PET was 0.96 high, but they of AET-P and PET-P were very low. Correlation coefficients of AET-MWS and PET-MWS were 0.67 and 0.73, respectively. Thus, correlation between evapotranspiration and MWS was the highest among meteorological factors in Suyong-gu. This means that meteorological factor to powerfully effect for the variation of evapotranspiration was MWS. The linear regression function of AET as MWS was AET=84.73$\times$MWS+223.05 and coefficient of determination was 0.54. The linear regression function of PET as MWS was PET=83.83$\times$MWS+203.62 and coefficient of determination was 0.45.

Parameter Regionalization of Hargreaves Equation Based on Climatological Characteristics in Korea (우리나라 기후특성을 고려한 Hargreaves 공식의 매개변수 지역화)

  • Moon, Jang Won;Jung, Chung Gil;Lee, Dong Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.9
    • /
    • pp.933-946
    • /
    • 2013
  • The quantitative analysis of evapotranspiration (ET) is a key component in hydrological studies and the establishment of water resources planning. Generally, the quantitative analysis of ET is performed by the estimation method of potential or reference ET based on meteorological factors such as air temperature, wind speed, etc. Hargreaves equation is one of empirical methods for reference ET using air temperature data. In this study, in order to estimate more exact reference ET considering climatological characteristics in Korea, parameter regionalization of Hargreaves equation is carried out. Firstly, modified Hargreaves equation is presented after the analysis of the relationship between solar radiation and temperature. Secondly, parameter ($K_{ET}$) optimization of Hargreaves equation is performed using Penman-Monteith method and modified equation at 71 weather stations. Lastly, the equation for calculating $K_{ET}$ using temperature data is proposed and verified. As a result, reference ET from original Hargreaves equation is overestimated or underestimated compared with Penman-Monteith method. But modified equation in this study is more accurate in the climatic conditions of Korea. In addition, the applicability of the equation between $K_{ET}$ and temperature is confirmed.

Comparison of Airborne Asbestos Concentrations from Soils in Naturally Occurring Asbestos(NOA) Areas - Activity Based Sampling(ABS) vs. Real-time Asbestos Fiber Monitor(F-1 fiber monitor) - (자연발생석면지역의 토양 내 석면함유율에 따른 비산석면 농도평가 - 활동근거시료채취방법(ABS)과 실시간 섬유 측정 장치(F-1 fiber monitor) 결과 비교 -)

  • Jang, Kwangmyung;Park, Kyunghoon;Choi, Sungwon;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.3
    • /
    • pp.245-256
    • /
    • 2017
  • Objectives: The present study is aimed at performing real-time measurement of fibrous materials using an F-1 fiber monitor, investigating the correlations between the measurements and environmental conditions, and assessing the feasibility of the use of the monitor in actual exposure assessments based on the accuracy and reliability of the device. Methods: Asbestos specimens with a fixed asbestos content were dispersed in a chamber and collected with a particle measuring test device. Measurements obtained by the existing PCM method, and with the F-1 fiber monitor were compared. In addition, concentrations of asbestos fibers obtained by the PCM method, the TEM method, and the F-1 fiber monitor were compared with that of specific ABS scenarios in NOA regions. Correlations of asbestos contents in soil and weather conditions with each method of measurement were analyzed. Results: Laboratory results showed that levels of asbestos fibers measured with each method increased as fiber contents in soil increased. In the accuracy and reproducibility assessment, no significant differences were found between the different methods of measurement. On-site assessment results showed positive correlations among the methods, and these correlations were less significant compared with what was shown by the laboratory results. Levels of asbestos fibers increased as asbestos contents in soil increased, and as temperature increased. Levels of asbestos fibers decreased as humidity increased, and wind speed did not significantly affect the extent to which asbestos fibers were scattered. Conclusions: While it would be premature to replace existing methods with the use of F-1 fiber monitors in real sites based on the results of this study, the monitor may be useful in the screening of the sites, which assesses hazard levels in different regions. Replacement of existing methods with the use of F-1 fiber monitors may be possible after the limitations identified in this study are overcome, and additional assessment data are obtained and reviewed under different conditions to confirm the reliability of the monitor in future research. Obtained assessment results may be used as basic data for the assessment of asbestos hazard in NOA regions.

Estimation of spatial evapotranspiration using Terra MODIS satellite image and SEBAL model in mixed forest and rice paddy area (SEBAL 모형과 Terra MODIS 영상을 이용한 혼효림, 논 지역에서의 공간증발산량 산정 연구)

  • Lee, Yong Gwan;Jung, Chung Gil;Ahn, So Ra;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.227-239
    • /
    • 2016
  • This study is to estimate Surface Energy Balance Algorithm for Land (SEBAL) daily spatial evapotranspiration (ET) comparing with eddy covariance flux tower ET in Seolmacheon mixed forest (SMK) and Cheongmicheon rice paddy (CFK). The SEBAL input data of Albedo, Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI) from Terra MODIS products and the meteorological data of wind speed, and solar radiation were prepared for 2 years (2012-2013). For the annual average flux tower ET of 302.8 mm in SMK and 482.0 mm in CFK, the SEBAL ETs were 183.3 mm and 371.5 mm respectively. The determination coefficients ($R^2$) of SEBAL ET versus flux tower ET for total periods were 0.54 in SMK and 0.79 in CFK respectively. The main reason of SEBAL ET underestimation for both sites was from the determination of hot pixel and cold pixel of the day and affected to the overestimation of sensible heat flux.

Simulation Model for Estimating Soil Temperature under Mulched Condition (멀칭에 따른 지온변화 모델의 작성 및 토양온도의 추정)

  • Cui RiXian;Lee Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.2
    • /
    • pp.119-126
    • /
    • 1999
  • A numerical model using soil surface energy balance and soil heat flow equations to estimate mulched soil temperature was developed. The required inputs data include weather data, such as global solar radiation, air temperature, wind speed, atmospheric water vapor pressure, the optical properties of mulching material, and soil physical properties. The observed average soil temperature at 50 cm depth was used as the initial value of soil temperature at each depth. Soil temperature was simulated starting at 0 hour at an interval of 10 minutes. The model reliably described the variation of soil temperature with time progress and soil depth. The correlation between the estimated and measured temperature yielded coefficient values of 0.961, 0.966 for 5cm and 10cm depth of the bare soil, respectively, 0.969, 0.965 for the paper mulched soil, and 0.915, 0.938 for the black polyethylene film mulched soil. The percentages of absolute differences less than 2$^{\circ}$C between soil temperatures measured and simulated at 10 minute interval were 97.4% and 98.5% for 5 cm and 10cm for the bare soil, respectively, and 95.8% and 97.4% for the paper mulched soil, and 70.1% and 92.5% for the polyethylene film mulched soil. The results indicated that the model was able to predict the soil temperature fairly well under mulched condition. However, in the night time, the model performance was a little poor as compared with day time due to the difficulty of accurate determination of the atmospheric long wave radiation.

  • PDF

The Role of Jungrangchun for a Wintering Waterbirds in Hangang (한강에서 월동하는 수금류의 서식지로서 중랑천의 중요성)

  • Kim, Mi-Ran;Lee, Yun-Kyung;Ahn, Ji-Young;Kim, In-Hong;Yoo, Jeong-Chil
    • The Korean Journal of Ecology
    • /
    • v.28 no.1
    • /
    • pp.45-53
    • /
    • 2005
  • Urban stream is an important place supporting urban ecosystem. This study was carried out to clarify the role of Jungrangchun for wintering waterbirds in Seoul. We monitored the fluctuation of waterbirds population using our census data (1997/98 winter) and pervious census data (the Ministry of Environment and National Institute of Environmental Research $1999{\sim}2004$). Wintering behaviours of common teals (Anas crecca) were also observed to understand the habitat use of waterbirds in this area. As a result of this, Jungrangchun was an important place to support $3,004\sim8,237$ wintering birds, mainly dabbling ducks and diving ducks. The population of diving ducks showed high annual fluctuation whilst the population of dabbling ducks regularly used this area every year The maximum number of waterbirds foraged and rested in late January and late February. In daily use, the number of waterbirds increased on afternoon and rapidly increased after sunset. It is assumed that waterbirds used this area not only as a nocturnal feeding site but also daytime feeding site. Thus, this result suggest that Jungrangchun is important for not only the daily use but also the nocturnal use of wintering waterbirds. The number of diving ducks was increased with low temperature and high wind speed. Therefore, this area was also a shelter of diving ducks on chilly and windy day.

Multiple Linear Regression Analysis of PV Power Forecasting for Evaluation and Selection of Suitable PV Sites (태양광 발전소 건설부지 평가 및 선정을 위한 선형회귀분석 기반 태양광 발전량 추정 모델)

  • Heo, Jae;Park, Bumsoo;Kim, Byungil;Han, SangUk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.6
    • /
    • pp.126-131
    • /
    • 2019
  • The estimation of available solar energy at particular locations is critical to find and assess suitable locations of PV sites. The amount of PV power generation is however affected by various geographical factors (e.g., weather), which may make it difficult to identify the complex relationship between affecting factors and power outputs and to apply findings from one study to another in different locations. This study thus undertakes a regression analysis using data collected from 172 PV plants spatially distributed in Korea to identify critical weather conditions and estimate the potential power generation of PV systems. Such data also include solar radiation, precipitation, fine dust, humidity, temperature, cloud amount, sunshine duration, and wind speed. The estimated PV power generation is then compared to the actual PV power generation to evaluate prediction performance. As a result, the proposed model achieves a MAPE of 11.696(%) and an R-squred of 0.979. It is also found that the variables, excluding humidity, are all statistically significant in predicting the efficiency of PV power generation. According, this study may facilitate the understanding of what weather conditions can be considered and the estimation of PV power generation for evaluating and determining suitable locations of PV facilities.

Implementation of Prosumer Management System for Small MicroGrid (소규모 마이크로그리드에서 프로슈머관리시스템의 구현)

  • Lim, Su-Youn;Lee, Tae-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.590-596
    • /
    • 2020
  • In the island areas where system connection with the commercial power grid is difficult, it is quite important to find a method to efficiently manage energy produced with independent microgrids. In this paper, a prosumer management system for P2P power transaction was realized through the testing the power meter and the response rate of the collected data for the power produced in the small-scale microgrids in which hybrid models of solar power and wind power were implemented. The power network of the microgrid prosumer was composed of mesh structure and the P2P power transaction was tested through the power meter and DC power transmitter in the off-grid sites which were independently constructed in three places. The measurement values of the power meter showed significant results of voltage (average): 380V + 0.9V, current (average): + 0.01A, power: 1000W (-1W) with an error range within ±1%. Stabilization of the server was also confirmed with the response rate of 0.32 sec. for the main screen, 2.61 sec. for the cumulative power generation, and 0.11 sec for the power transaction through the transmission of 50 data in real time. Therefore, the proposed system was validated as a P2P power transaction system that can be used as an independent network without transmitted by Korea Electric Power Corporation (KEPCO).

A Statistical model to Predict soil Temperature by Combining the Yearly Oscillation Fourier Expansion and Meteorological Factors (연주기(年週期) Fourier 함수(函數)와 기상요소(氣象要素)에 의(依)한 지온예측(地溫豫測) 통계(統計) 모형(模型))

  • Jung, Yeong-Sang;Lee, Byun-Woo;Kim, Byung-Chang;Lee, Yang-Soo;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.2
    • /
    • pp.87-93
    • /
    • 1990
  • A statistical model to predict soil temperature from the ambient meteorological factors including mean, maximum and minimum air temperatures, precipitation, wind speed and snow depth combined with Fourier time series expansion was developed with the data measured at the Suwon Meteorolical Service from 1979 to 1988. The stepwise elimination technique was used for statistical analysis. For the yearly oscillation model for soil temperature with 8 terms of Fourier expansion, the mean square error was decreased with soil depth showing 2.30 for the surface temperature, and 1.34-0.42 for 5 to 500-cm soil temperatures. The $r^2$ ranged from 0.913 to 0.988. The number of lag days of air temperature by remainder analysis was 0 day for the soil surface temperature, -1 day for 5 to 30-cm soil temperature, and -2 days for 50-cm soil temperature. The number of lag days for precipitaion, snow depth and wind speed was -1 day for the 0 to 10-cm soil temperatures, and -2 to -3 days for the 30 to 50-cm soil teperatures. For the statistical soil temperature prediction model combined with the yearly oscillation terms and meteorological factors as remainder terms considering the lag days obtained above, the mean square error was 1.64 for the soil surfac temperature, and ranged 1.34-0.42 for 5 to 500cm soil temperatures. The model test with 1978 data independent to model development resulted in good agreement with $r^2$ ranged 0.976 to 0.996. The magnitudes of coeffcicients implied that the soil depth where daily meteorological variables night affect soil temperature was 30 to 50 cm. In the models, solar radiation was not included as a independent variable ; however, in a seperated analysis on relationship between the difference(${\Delta}Tmxs$) of the maximum soil temperature and the maximum air temperature and solar radiation(Rs ; $J\;m^{-2}$) under a corn canopy showed linear relationship as $${\Delta}Tmxs=0.902+1.924{\times}10^{-3}$$ Rs for leaf area index lower than 2 $${\Delta}Tmxs=0.274+8.881{\times}10^{-4}$$ Rs for leaf area index higher than 2.

  • PDF