• 제목/요약/키워드: Wind Speed Data

검색결과 1,221건 처리시간 0.027초

강원도 기상데이터를 이용한 풍속 지도 제작 (Producing Wind Speed Maps Using Gangwon Weather Data)

  • 김기홍;윤준희;김백석
    • 대한공간정보학회지
    • /
    • 제18권1호
    • /
    • pp.31-39
    • /
    • 2010
  • 석유파동이후 신재생에너지의 중요성이 대두되고 현재에 들어 저탄소 녹색성장으로 다시금 그 중요성은 커지고 있다. 본 논문에서는 신재생 에너지 중 가장 현실적인 대안으로 받아들여지고 있는 풍력에너지에 대하여 강원지방 기상청의 2008년 데이터 이용하여 풍속지도를 제작 하였다. 강원도 월별 평균 풍속과 최대풍속지도를 제작하였으며, 기상자료에 여러 가지 보간법을 적용하고 방법에 따른 차이를 확인하였다. 강원도 지역의 특수한 지형적, 기후적 특성이 반영된 풍속지도는 풍력 단지 입지분석에 활용성이 높을 것으로 기대된다.

와이블데이터를 이용한 소형풍력발전기 출력에 대한 평가 (Evaluating the Output of Small-size Wind Power Generators Using Weibull Data)

  • 유기표;김영문
    • 한국태양에너지학회 논문집
    • /
    • 제32권2호
    • /
    • pp.95-104
    • /
    • 2012
  • This study purposed to predict wind energy for small size wind power generators at 50m above the ground in each area using mean wind speed data for 10 minutes collected from 2001 to 2011 by meteorological data in large cities having over 60% of 15 story (50m) or higher apartments including Seoul, Daejeon, Gwangju and Daegu representing the inland region, and Busan, Incheon and Ulsan representing the coastal region. In the results of analysis, we confirmed close agree ment between observatory weather data and probability density distribution obtained using Weibull's parameters, and this suggests that Weibull's parameter is applicable to the estimation of wind energy. Hourly output energy using the mean wind speed for 10 minutes and output energy obtained from Weibull's parameter showed an error less than 5%, and thus it was found that wind energy can be evaluated using Weibull's modulus.

풍력기반 하이브레드 풍력발전기의 원격 정전압 변동률 분석 장치에 관한 연구 (A Study of the Analysis System of Remote Control a Voltage Fluctuation of a Based Wind Turbine)

  • 장미혜;선민영;이종조;임재규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.456-459
    • /
    • 2009
  • we studied a data acquisition and control system of a wind turbine for measuring and controlling a voltage fluctuations of a wind turbine system. The wind turbine system is installed out control area. So, it is so important for supervising to wind turbine of a maintenance, wind speed, optical resources wind turbine output, wind speed, wind direction, over voltage of a generator. This system can be supplied a data of over voltage, under voltage, voltage fluctuations of a wind turbine for controlling an EMS : Energy Management System or a SCADA : Supervision Control and Data Acquisition at a constitute of a wind farm. The of voltage fluctuation system of a wind turbine is improving an electric power supply power quality of a distribution line and unspecified individuals of used wind turbine.

  • PDF

정확도 향상을 위한 CNN-LSTM 기반 풍력발전 예측 시스템 (CNN-LSTM based Wind Power Prediction System to Improve Accuracy)

  • 박래진;강성우;이재형;정승민
    • 신재생에너지
    • /
    • 제18권2호
    • /
    • pp.18-25
    • /
    • 2022
  • In this study, we propose a wind power generation prediction system that applies machine learning and data mining to predict wind power generation. This system increases the utilization rate of new and renewable energy sources. For time-series data, the data set was established by measuring wind speed, wind generation, and environmental factors influencing the wind speed. The data set was pre-processed so that it could be applied appropriately to the model. The prediction system applied the CNN (Convolutional Neural Network) to the data mining process and then used the LSTM (Long Short-Term Memory) to learn and make predictions. The preciseness of the proposed system is verified by comparing the prediction data with the actual data, according to the presence or absence of data mining in the model of the prediction system.

시계열 자료 분석기법에 의한 풍속 예측 연구 (Estimation Model of Wind speed Based on Time series Analysis)

  • 김건훈;정영석;주영철
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.288-293
    • /
    • 2008
  • A predictive model of wind speed in the wind farm has very important meanings. This paper presents an estimation model of wind speed based on time series analysis using the observed wind data at Hangyeong Wind Farm in Jeju island, and verification of the predictive model. In case of Hangyeong Wind Farm and Haengwon Wind Farm, The ARIMA(Autoregressive Integrated Moving Average) predictive model was appropriate, and the wind speed estimation model was developed by means of parametric estimation using Maximum likelihood Estimation.

  • PDF

동심원 등가풍속을 이용한 대기안정도에 따른 풍력자원 변화에 관한 연구 (Accounting for the Atmospheric Stability in Wind Resource Variations and Its Impacts on the Power Generation by Concentric Equivalent Wind Speed)

  • 류건화;김동혁;이화운;박순영;유정우;김현구
    • 한국태양에너지학회 논문집
    • /
    • 제36권1호
    • /
    • pp.49-61
    • /
    • 2016
  • The power production using hub height wind speed tends to be overestimated than actual power production. It is because the hub height wind speed cannot represent vertical wind shear and blade tip loss that aerodynamics characteristic on the wind turbine. The commercial CFD model WindSim is used to compare and analyze each power production. A classification of atmospheric stability is accomplished by Monin-Obukhov length. The concentric wind speed constantly represents low value than horizontal equivalent wind speed or hub height wind speed, and also relevant to power production. The difference between hub height wind speed and concentric equivalent wind speed is higher in nighttime than daytime. Under the strongly convective state, power production is lower than under the stable state, especially using the concentric equivalent wind speed. Using the concentric equivalent wind speed considering vertical wind shear and blade tip loss is well estimated to decide suitable area for constructing wind farm.

제주지역 바람자료 분석 및 풍속 예측에 관한 연구 (A Study on the Wind Data Analysis and Wind Speed Forecasting in Jeju Area)

  • 박윤호;김경보;허수영;이영미;허종철
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.66-72
    • /
    • 2010
  • In this study, we analyzed the characteristics of wind speed and wind direction at different locations in Jeju area using past 10 years observed data and used them in our wind power forecasting model. Generally the strongest hourly wind speeds were observed during daytime(13KST~15KST) whilst the strongest monthly wind speeds were measured during January and February. The analysis with regards to the available wind speeds for power generation gave percentages of 83%, 67%, 65% and 59% of wind speeds over 4m/s for the locations Gosan, Sungsan, Jeju site and Seogwipo site, respectively. Consequently the most favorable periods for power generation in Jeju area are in the winter season and generally during daytime. The predicted wind speed from the forecast model was in average lower(0.7m/s) than the observed wind speed and the correlation coefficient was decreasing with longer prediction times(0.84 for 1h, 0.77 for 12h, 0.72 for 24h and 0.67 for 48h). For the 12hour prediction horizon prediction errors were about 22~23%, increased gradually up to 25~29% for 48 hours predictions.

Numerical investigation on effects of rotor control strategy and wind data on optimal wind turbine blade shape

  • Yi, Jin-Hak;Yoon, Gil-Lim;Li, Ye
    • Wind and Structures
    • /
    • 제18권2호
    • /
    • pp.195-213
    • /
    • 2014
  • Recently, the horizontal axis rotor performance optimizer (HARP_Opt) tool was developed in the National Renewable Energy Laboratory, USA. This innovative tool is becoming more popular in the wind turbine industry and in the field of academic research. HARP_Optwas developed on the basis of two fundamental modules, namely, WT_Perf, a performance evaluator computer code using the blade element momentum theory; and a genetic algorithm module, which is used as an optimizer. A pattern search algorithm was more recently incorporated to enhance the optimization capability, especially the calculation time and consistency of the solutions. The blade optimization is an aspect that is highly dependent on experience and requires significant consideration on rotor control strategies, wind data, and generator type. In this study, the effects of rotor control strategies including fixed speed and fixed pitch, variable speed and fixed pitch, fixed speed and variable pitch, and variable speed and variable pitch algorithms on optimal blade shapes and rotor performance are investigated using optimized blade designs. The effects of environmental wind data and the objective functions used for optimization are also quantitatively evaluated using the HARP_Opt tool. Performance indices such as annual energy production, thrust, torque, and roof-flap moment forces are compared.

Reliability of numerical computation of pedestrian-level wind environment around a row of tall buildings

  • Lam, K.M.;To, A.P.
    • Wind and Structures
    • /
    • 제9권6호
    • /
    • pp.473-492
    • /
    • 2006
  • This paper presents numerical results of pedestrian-level wind environment around the base of a row of tall buildings by CFD. Four configurations of building arrangement are computed including a single square tall building. Computed results of pedestrian-level wind flow patterns and wind speeds are compared to previous wind tunnel measurement data to enable an assessment of CFD predictions. The CFD model uses the finite-volume method with RNG $k-{\varepsilon}$ model for turbulence closure. It is found that the numerical results can reproduce key features of pedestrian-level wind environment such as corner streams around corners of upwind building, sheltered zones behind buildings and channeled high-speed flow through a building gap. However, there are some differences between CFD results and wind tunnel data in the wind speed distribution and locations of highest wind speeds inside the corner streams. In locations of high ground-level wind speeds, CFD values match wind tunnel data within ${\pm}10%$.

Wind Attribute Time Series Modeling & Forecasting in IRAN

  • Ghorbani, Fahimeh;Raissi, Sadigh;Rafei, Meysam
    • 동아시아경상학회지
    • /
    • 제3권3호
    • /
    • pp.14-26
    • /
    • 2015
  • A wind speed forecast is a crucial and sophisticated task in a wind farm for planning turbines and corresponds to an estimate of the expected production of one or more wind turbines in the near future. By production is often meant available power for wind farm considered (with units KW or MW depending on both the wind speed and direction. Such forecasts can also be expressed in terms of energy, by integrating power production over each time interval. In this study, we technically focused on mathematical modeling of wind speed and direction forecast based on locally data set gathered from Aghdasiyeh station in Tehran. The methodology is set on using most common techniques derived from literature review. Hence we applied the most sophisticated forecasting methods to embed seasonality, trend, and irregular pattern for wind speed as an angular variables. Through this research, we carried out the most common techniques such as the Box and Jenkins family, VARMA, the component method, the Weibull function and the Fourier series. Finally, the best fit for each forecasting method validated statistically based on white noise properties and the final comparisons using residual standard errors and mean absolute deviation from real data.