• 제목/요약/키워드: Wind Speed Data

검색결과 1,213건 처리시간 0.023초

5MW급 풍력 터빈의 공력 및 제어 특성에 관한 연구 (Study on the Aerodynamics and Control Characteristics of 5 MW Wind Turbine)

  • 타이펑주;강기원;이장호
    • 신재생에너지
    • /
    • 제7권2호
    • /
    • pp.59-69
    • /
    • 2011
  • 5MW wind turbine is regarded as a promising system for offshore wind farms in the western sea of Korean. And the wind turbine is developed in many companies but not much information is known about it. In this study, aerodynamics and control characteristics depending on several control methods is reviewed on 5MW wind turbine, in which configuration data of the turbine are used from the previous study of NREL. For the calculations, GH_Bladed, which is certificated software by GL, is used and compared with data from FAST code of NREL. This study shows that how much power production, and aerodynamic performances and loads can be obtained with different controls in the operation of 5MW wind turbine, which is expected to be useful in the design of the wind turbine system.

Enhancing Wind Speed and Wind Power Forecasting Using Shape-Wise Feature Engineering: A Novel Approach for Improved Accuracy and Robustness

  • Mulomba Mukendi Christian;Yun Seon Kim;Hyebong Choi;Jaeyoung Lee;SongHee You
    • International Journal of Advanced Culture Technology
    • /
    • 제11권4호
    • /
    • pp.393-405
    • /
    • 2023
  • Accurate prediction of wind speed and power is vital for enhancing the efficiency of wind energy systems. Numerous solutions have been implemented to date, demonstrating their potential to improve forecasting. Among these, deep learning is perceived as a revolutionary approach in the field. However, despite their effectiveness, the noise present in the collected data remains a significant challenge. This noise has the potential to diminish the performance of these algorithms, leading to inaccurate predictions. In response to this, this study explores a novel feature engineering approach. This approach involves altering the data input shape in both Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Autoregressive models for various forecasting horizons. The results reveal substantial enhancements in model resilience against noise resulting from step increases in data. The approach could achieve an impressive 83% accuracy in predicting unseen data up to the 24th steps. Furthermore, this method consistently provides high accuracy for short, mid, and long-term forecasts, outperforming the performance of individual models. These findings pave the way for further research on noise reduction strategies at different forecasting horizons through shape-wise feature engineering.

강한 측풍에 대한 한국형 고속 틸팅 열차의 안전성 고찰 (Investigation on the Safety of TTX in Strong Cross wind)

  • 김덕영;윤수환;하종수;노주현;권혁빈;고태환;이동호
    • 한국철도학회논문집
    • /
    • 제10권3호
    • /
    • pp.271-277
    • /
    • 2007
  • The Korean Tilting Train eXpress (TTX) development program is in progress for the purpose of running speed or passenger's comfort improvement at the curved track. However, the speed up and light weight of train make poor the dynamic safety of the TTX in strong cross wind. In this paper, 3-dimensional numerical analysis on the flow field around the TTX under strong cross wind is performed for each operating condition, such as the train speed, cross wind speed, tilting/nontilting condition, and so on. Due to the strong cross wind, the pressure distribution around the train becomes asymmetric, especially at the leading car. Asymmetrical pressure distribution causes the side force and strong unstability. The side force on the train is proportional to the train speed and cross wind speed. Based on the numerical results, the overturning coefficients are predicted for investigation of the train stability, and all of them are less than the critical value, 0.9. The results in this study would be a good data for providing importance to judgement of cross wind safety of TTX.

Wind characteristics observed in the vicinity of tropical cyclones: An investigation of the gradient balance and super-gradient flow

  • Tse, K.T.;Li, S.W.;Lin, C.Q.;Chan, P.W.
    • Wind and Structures
    • /
    • 제19권3호
    • /
    • pp.249-270
    • /
    • 2014
  • Through comparing the mean wind profiles observed overland during the passages of four typhoons, and the gradient wind speeds calculated based on the sea level pressure data provided by a numerical model, the present paper discusses, (a) whether the gradient balance is a valid assumption to estimate the wind speed in the height range of 1250 m ~ 1750 m, which is defined as the upper-level mean wind speed, in a tropical cyclone over land, and (b) if the super-gradient feature is systematically observed below the height of 1500 m in the tropical cyclone wind field over land. It has been found that, (i) the gradient balance is a valid assumption to estimate the mean upper-level wind speed in tropical cyclones in the radial range from the radius to the maximum wind (RMW) to three times the RMW, (ii) the super-gradient flow dominates the wind field in the tropical cyclone boundary layer inside the RMW and is frequently observed in the radial range from the RMW to twice the RMW, (iii) the gradient wind speed calculated based on the post-landfall sea level pressure data underestimates the overall wind strength at an island site inside the RMW, and (iv) the unsynchronized decay of the pressure and wind fields in the tropical cyclone might be the reason for the underestimation.

월령단지 풍력발전 예보모형 개발에 관한 연구 (A Study on Development of a Forecasting Model of Wind Power Generation for Walryong Site)

  • 김현구;이영섭;장문석;경남호
    • 한국태양에너지학회 논문집
    • /
    • 제26권2호
    • /
    • pp.27-34
    • /
    • 2006
  • In this paper, a forecasting model of wind speed at Walryong Site, Jeju Island is presented, which has been developed and evaluated as a first step toward establishing Korea Forecasting Model of Wind Power Generation. The forecasting model is constructed based on neural network and is trained with wind speed data observed at Cosan Weather Station located near by Walryong Site. Due to short period of measurements at Walryong Site for training statistical model Gosan Weather Station's long-term data are substituted and then transplanted to Walryong Site by using Measure-Correlate-Predict technique. One to three-hour advance forecasting of wind speed show good agreements with the monitoring data of Walryong site with the correlation factors 0.96 and 0.88, respectively.

CFD를 이용한 풍력발전 터빈의 3차원 유동해석 및 성능평가에 관한 연구 (A Study on Three-Dimensional Flow Characteristics and Power Performance of HAWT(Horizontal Axis Wind Turbine) by CFD)

  • 김범석;김정환;남청도;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.447-450
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine a 500 kW Horizontal Axis Wind Turbine (HAWT) power performance and 3-D rotor flow characteristics, which are compared to calculation data from Delft University. The experimental approach, which has been the main method of investigation, appears to be reaching its limits, the cost increasing relate with the size of wind turbines. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes solvers is considered a very serious contender. We has used the CFD software package CFX-TASCflow as a modeling tool to predict the power performance and 3-D flow characteristics of a wind turbine on the basis of its geometry and operating data. The wind turbine with 40m diameters rotor, it was scaled to compare with the calculation data from delft university. The HAWT, which has eight-rpm variations are investigated respectively. The pitch angle is $+0.5^{\circ}$and wind speed is fixed at 5m/s. The tip speed ratio (TSR) of the HAWT ranging from 2.89 to 9.63.

  • PDF

태풍 모의를 통한 해상 설계풍속 추정 (Extreme Offshore Wind Estimation using Typhoon Simulation)

  • 고동휘;정신택;조홍연;강금석
    • 한국해안·해양공학회논문집
    • /
    • 제26권1호
    • /
    • pp.16-24
    • /
    • 2014
  • 극치해상 풍속 산정을 위해서는 장기 관측자료가 반드시 필요하다. 그러나, 해상에서의 장기 관측 자료를 확보하기란 거의 불가능하다. 따라서 해상 바람 조건을 분석하기 위해 태풍 모의 기법이 널리 이용되어 진다. 본 연구에서는 Holland(1980) model을 이용하여 1978년부터 2012년까지(35년간) 한반도 서해안 지역에 영향을 미친 총 74개 태풍에 대해서 태풍 모의를 하였다. 그 결과, BOLAVEN(1215)에 의한 HeMOSU-1의 100 m 고도 최대풍속은 49.02 m/s로서 35년간 가장 영향을 크게 미친 태풍으로 나타났다. 한편, 모의 결과는 서해안 지역에 설치 된 HeMOSU-1의 관측치(MUIFA, BOLAVEN, SANBA)와 비교하였다. 그리고 재현주기별 극치 풍속을 예측하기 위해 한반도 서해안 4개 지점(HeMOSU-1, 군산, 목포, 제주)의 35개 연 최대 풍속 자료에 Gumbel 분포형을 적용하였다. HeMOSU-1 지점의 해상 100 m 높이에서의 50년 빈도 설계풍속 값은 50 m/s, 100년 빈도 설계풍속 값은 54.92 m/s로 나타났으며, BOLAVEN 풍속이 50년 빈도 풍속에 해당되었다.

Numerical investigation of flow structures and aerodynamic pressures around a high-speed train under tornado-like winds

  • Simin Zou;Xuhui He;Teng Wu
    • Wind and Structures
    • /
    • 제38권4호
    • /
    • pp.295-307
    • /
    • 2024
  • The funnel-shaped vortex structure of tornadoes results in a spatiotemporally varying wind velocity (speed and direction) field. However, very limited full-scale tornado data along the height and radius positions are available to identify and reliably establish a description of complex vortex structure together with the resulting aerodynamic effects on the high-speed train (HST). In this study, the improved delayed detached eddy simulation (IDDES) for flow structures and aerodynamic pressures around an HST under tornado-like winds are conducted to provide high-fidelity computational fluid dynamics (CFD) results. To demonstrate the accuracy of the numerical method adopted in this study, both field observations and wind-tunnel data are utilized to respectively validate the simulated tornado flow fields and HST aerodynamics. Then, the flow structures and aerodynamic pressures (as well as aerodynamic forces and moments) around the HST at various locations within the tornado-like vortex are comprehensively compared to highlight the importance of considering the complex spatiotemporal wind features in the HST-tornado interactions.

Towards performance-based design under thunderstorm winds: a new method for wind speed evaluation using historical records and Monte Carlo simulations

  • Aboshosha, Haitham;Mara, Thomas G.;Izukawa, Nicole
    • Wind and Structures
    • /
    • 제31권2호
    • /
    • pp.85-102
    • /
    • 2020
  • Accurate load evaluation is essential in any performance-based design. Design wind speeds and associated wind loads are well defined for synoptic boundary layer winds but not for thunderstorms. The method presented in the current study represents a new approach to obtain design wind speeds associated with thunderstorms and their gust fronts using historical data and Monte Carlo simulations. The method consists of the following steps (i) developing a numerical model for thunderstorm downdrafts (i.e. downbursts) to account for storm translation and outflow dissipation, (ii) utilizing the model to characterize previous events and (iii) extrapolating the limited wind speed data to cover life-span of structures. The numerical model relies on a previously generated CFD wind field, which is validated using six documented thunderstorm events. The model suggests that 10 parameters are required to describe the characteristics of an event. The model is then utilized to analyze wind records obtained at Lubbock Preston Smith International Airport (KLBB) meteorological station to identify the thunderstorm parameters for this location, obtain their probability distributions, and utilized in the Monte Carlo simulation of thunderstorm gust front events for many thousands of years for the purpose of estimating design wind speeds. The analysis suggests a potential underestimation of design wind speeds when neglecting thunderstorm gust fronts, which is common practice in analyzing historical wind records. When compared to the design wind speed for a 700-year MRI in ASCE 7-10 and ASCE 7-16, the estimated wind speeds from the simulation were 10% and 11.5% higher, respectively.

KORUS-AQ 기간 동안 초기 입력 자료에 따른 WRF 기상장 모의 결과 비교 (Impact of Different Meteorological Initializations on WRF Simulation During the KORUS-AQ Campaign)

  • 문정혁;전원배;이화운
    • 한국환경과학회지
    • /
    • 제29권1호
    • /
    • pp.33-44
    • /
    • 2020
  • Recently, a variety of modeling studies have been conducted to examine the air quality over South Korea during the Korea - United States Air Quality (KORUS-AQ) campaign period (May 1 to June 10, 2016). This study investigates the impact of different meteorological initializations on atmospheric modeling results. We conduct several simulations during the KORUS-AQ period using the Weather Research and Forecasting (WRF) model with two different initial datasets, which is FNL of NCEP and ERA5 of ECMWF. Comparing the raw initial data, ERA5 showed better accuracy in the temperature, wind speed, and mixing ratio fields than those of NCEP-FNL. On the other hand, the results of WRF simulations with ERA5 showed better accuracy in the simulated temperature and mixing ratio than those with FNL, except for wind speed. Comparing the nudging efficiency of temperature and wind speed fields, the grid nudging effect on the FNL simulation was larger than that on the ERA5 simulation, but the results of mixing ratio field was the opposite. Overall, WRF simulation with ERA5 data showed a better performance for temperature and mixing ratio simulations than that with FNL data. For wind speed simulation, however, WRF simulation with FNL data indicated more accurate results compared to that with ERA5 data.