Browse > Article
http://dx.doi.org/10.5322/JESI.2020.29.1.33

Impact of Different Meteorological Initializations on WRF Simulation During the KORUS-AQ Campaign  

Mun, Jeonghyeok (Division of Earth Environmental System, Pusan National University)
Jeon, Wonbae (Department of Atmospheric Sciences, Pusan National University)
Lee, Hwa Woon (Department of Atmospheric Sciences, Pusan National University)
Publication Information
Journal of Environmental Science International / v.29, no.1, 2020 , pp. 33-44 More about this Journal
Abstract
Recently, a variety of modeling studies have been conducted to examine the air quality over South Korea during the Korea - United States Air Quality (KORUS-AQ) campaign period (May 1 to June 10, 2016). This study investigates the impact of different meteorological initializations on atmospheric modeling results. We conduct several simulations during the KORUS-AQ period using the Weather Research and Forecasting (WRF) model with two different initial datasets, which is FNL of NCEP and ERA5 of ECMWF. Comparing the raw initial data, ERA5 showed better accuracy in the temperature, wind speed, and mixing ratio fields than those of NCEP-FNL. On the other hand, the results of WRF simulations with ERA5 showed better accuracy in the simulated temperature and mixing ratio than those with FNL, except for wind speed. Comparing the nudging efficiency of temperature and wind speed fields, the grid nudging effect on the FNL simulation was larger than that on the ERA5 simulation, but the results of mixing ratio field was the opposite. Overall, WRF simulation with ERA5 data showed a better performance for temperature and mixing ratio simulations than that with FNL data. For wind speed simulation, however, WRF simulation with FNL data indicated more accurate results compared to that with ERA5 data.
Keywords
KORUS-AQ; ERA5; NCEP-FNL; WRF; Grid nudging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Choi, J. W., Lee, J. G., 2015, A Sensitivity study of WRF model simulations to nudging methods for a Yeongdong heavy snowfall event, Atmosphere, 25(1), 99-115.   DOI
2 Choi, W., Lee, J. G., Kim, Y. J., 2013, The impact of data assimilatioin on WRF simulation using surface data and radar data: case study, Atmosphere, 23(2), 143-160.   DOI
3 Dudhia, J., 1989, Numerical study of convection observed during winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077-3107.   DOI
4 Ha, M., Lee, T., Lee, I. H., Jeon, E. C., 2017, Analysis about CO Diffusion Change Caused by Climate Change Using CALPUFF, J. Climate Change Res., 8(2), 81-89.   DOI
5 Hersbach, H., Dee, D., 2016, ERA5 reanalysis is in production, ECMWF Newsletter, 147, 7, available at: https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production(last access: 14 November 2018).
6 Jeon, W., Choi, Y., Lee, H. W., Lee, S. H., Yoo, J. W., Park, J., Lee, H. J., 2015, A quantitative analysis of grid nudging effect on each process of PM2.5 production in the Korean Peninsula, Atmos. Environ., 122, 763-774.   DOI
7 Hong, S. Y., Dudhia, J., Chen, S. H., 2004, A Revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation, Mon. Weather Rev., 132, 103-120.   DOI
8 Hong, S. Y., Noh, Y., Dudhia, J., 2006, A New vertical diffusion package with an explicit treatment of entrainment processes, Mon. Weather Rev. 134, 2318-2341.   DOI
9 Huang, M., Diskin, J. H. G. S., Santanello, J. A., Kumar, S. V., Pusede, S. E., Parrington, M., Charmichael, G. R., 2018, Modeling regional pollution transport events during KORUS-AQ: Progress and challenges in improving representation of land -atmosphere feedbacks, J. Geophys. Res. Atmos., 123, 732-756.   DOI
10 Jeon, W. B., Lee, H. W., Lee, S. H., Choi, H. J., Kim, D. H., Park, S. Y., 2011, Numerical study on the impact of meteorological input data on air quality modeling on high ozone episode at coastal region, J. Korean Soc. Atmos. Environ., 27(1), 30-40.   DOI
11 Lee, H. W., Jung, W. S., Kim, H. G., Lee, S. H., 2004, A Study of atmospheric field around the Pohang for dispersion analysis of air pollutants, J. Korean Soc. Atmos. Environ., 20(1), 1-15.
12 Jeong, J. H., Oh, I., Kang, Y. H., Bang, J. H., An, H., Seok, H. B., Kim, Y. K., Hong, J., Kim, J., 2016, WRF modeling approach for improvement of air quality modeling in the Seoul metropolitan region: seasonal sensitivity analysis of the WRF physics options, J. Environ. Sci., 25(1), 67-83.
13 Jo, Y. J., Lee, H. J., Chang, L. S., Kim, C. H., 2017, Sensitivity study of the initial meteorological fields on the PM10 concentration predictions using CMAQ modeling, J. Korean Soc. Atmos. Environ., 33(6), 554-569.   DOI
14 Kain, J. S., 2004, The Kain‐Fritsch convective parameterization: An update, J. Appl. Meteorol., 43, 170-181.   DOI
15 Kim, J. A., Jin, H. A., Kim, C. H., 2007, Characteristics of time variations of PM10 concentrations in Busan and interpreting its generation mechanism using meteorological variables, J. Environ. Sci., 16(10), 1157-1167.
16 Kim, T., Jeong, J. H., Kim, Y. K., 2016, Sensitivity analysis of the WRF model according to the impact of nudging for improvement of ozone prediction, J. Environ. Sci. Int., 25(5), 683-694.   DOI
17 Lee, H. W., Kim, M. J., Kim, D. H., Kim, H. G., Lee, S. H., 2009, Investigation of the Assimilated Surface Wind Characteristics for the Evaluation of Wind Resources, J. Korean Soc. Atmos. Environ., 25(1), 1-14.   DOI
18 Lennartson, E. M., Wang, J., Gu, J., Castro Garcia, L., Ge, C., Gao, M., Choi, M., Saide, P. E., Carmichael, G. R., Kim, J., Janz, S. J., 2018, Diurnal variation of aerosol optical depth and $PM_{2.5}$ in South Korea: a synthesis from AERONET, satellite (GOCI), KORUS -AQ observation, and the WRF-Chem model, Atmos. Chem. Phys., 18, 15125-15144.   DOI
19 Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., Clough, S. A., 1997, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, JGR, 102, 16663-16682.   DOI
20 Miao, Y., Guo, J., Liu, S., Liu, H., Li, Z., Zhang, W., Zhai, P., 2017, Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution, Atmos. Chem. Phys., 17, 3097-3110.   DOI
21 Mooney, P. A., Mulligan, F. J., Fealy, R., 2011, Comparison of ERA-40, ERA-Interim and NCEP/ NCAR reanalysis data with observed surface air temperatures over Ireland, Int. J. Climatol., 31(4), 545-557.   DOI
22 Ryu, C. M., Cho, I. H., 2010, Sensitivity analysis of KWRF model using analysis nudging method in relate to forecasting precipitation, Proceedings of the 2010 Autumn Meeting of Korean Meteorological Society, 246-247 (in Korean).
23 Mun, J., Lee, H. W., Jeon, W., Lee, S. H., 2017, impact of meteorological initial input data on WRF simulation - comparison of ERA-Interim and FNL data, J. Environ. Sci., 26(12), 1307-1319.
24 National Institute of Environmental Research (NIER), 2013, A Study on Improvement and Expansion of Urban Scale PM Forecasting System (IV), 5-13.
25 Rasmussen, D. J., Fiore, A. M., Naik, V., Horowitz, L. W., McGinnis, S. J., Schultz, M. G., 2011, Surface ozone-temperature relationships in the eastern US: A monthly climatology for evaluating chemistry-climate models, Atmos. Environ., 47, 142-153.   DOI
26 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X., Wang, W., Powers, J. G., 2008, A Description of the advanced research WRF version 3, NCAR Tech. Note NCAR/TN-475+STR, National Center for Atmospheric Research, Boulder, CO, 125.
27 Seibert, P., Beyrich, F., Gryning, S. E., Joffre, S., Rasmussen, A., Tercier, P., 2000, Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 1001-1027.   DOI