• Title/Summary/Keyword: Wind Speed Data

Search Result 1,213, Processing Time 0.033 seconds

Self Tuning PI Temperature Control for BIPV Cooling System (BIPV 냉각시스템을 위한 자기동조 PI 온도제어)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Byung-Jin;Baek, Jung-Woo;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1080_1081
    • /
    • 2009
  • This paper proposes a cooling system using self tuning PI controller for improving the output of BIPV module. The temperature characteristics in regard to improving the output of BIPV system has rarely been studied up to now but some researchers only presented the method using a ventilator. The cooling system efficiency of BIPV module applied to a ventilator mainly depends on the weather such as wind and insolation etc. Because the cooling system of BIPV module using a ventilator is so sensitive, that is being set off by wind speed at all time but is unable to operate in the nominal operating cell temperature(NOCT) which is able to make the maximum output. The paper proposes the cooling system using thermoelectron by self tuning PI controller so as to solve such problems. The thermoelectron control of self tuning PI controller can be controlled independently in the outside environment because that is performed by micro-controller. The temperature control of thermoelectron, also, can be operated around NOCT through algorism of the temperature control. Therefore, outputs of the whole system increase and the efficiency rises. The paper demonstrates the validity of proposed method by comparing the data obtained through a experiment of the cooling method of BIPV using a ventilator and proposed thermoelectron

  • PDF

Experimental Validation of Ornithopter Aerodynamic Model in Low Reynolds Number Regime (저 레이놀즈 수 영역에서 날갯짓 비행체 공력 모델의 실험적 검증)

  • Lee, Jun-Seong;Kim, Dae-Kwan;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.647-654
    • /
    • 2010
  • In this study, an efficient ornithopter aerodynamic model, which is applicable to ornithopter wing design considering fluid-structure interaction or ornithopter flight dynamics and control simulation, was proposed and experimentally validated through the wind tunnel experiments. Due to the ornithopter aerodynamics governed by unsteady low Reynolds number flow, an experimental device was specially designed and developed. A part of the experimental device, 2-axis loadcell, was situated in the non-inertial frame; the dynamic calibration method was established to compensate the inertial load for pure aerodynamic load measurements. The characteristics of proposed aerodynamic model were compared with the experimental data in terms of mean and root-mean-square values of lift and drag coefficients with respect to the flow speed, flapping frequency, and fixed angle of attack.

Prediction of temperature distribution in PV module using finite element method (유한 요소 해석 프로그램을 이용한 모듈 내 온도 분포 예측)

  • Park, Young-Eun;Jung, Tae-Hee;Go, Seok-Hwan;Ju, Young-Chul;Kim, Jun-Tae;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.2
    • /
    • pp.65-72
    • /
    • 2016
  • PV module is installed in various outdoor conditions such as solar irradiation, ambient temperature, wind speed and etc. Increase in solar cell temperature within PV module aggravates the behaviour and durability of PV module. It is difficult to measure temperature among respective PV module components during PV module operating, because the temperature within PV module depends on thermal characteristics of PV module components materials as well as operating conditions such as irradiation, outdoor temperature, wind etc. In this paper, simulation by using finite element method is conducted to predict the temperature of each components within PV module installed to outdoor circumstance. PV module structure based on conventional crystalline Si module is designed and the measured values of thickness and thermal parameters of component materials are used. The validation of simulation model is confirmed by comparing the calculated results with the measured temperatures data of PV module. The simulation model is also applied to estimate the thermal radiation of PV module by front glass and back sheet.

Characteristics of Surface Ozone in a Valley Area Located Downwind from Coastal Cities under Sea-breeze Condition: Seasonal Variation and Related Winds (연안 대도시 해풍 풍하측 계곡지역의 지표오존 분포 특성: 계절변화와 바람과의 관계)

  • Kang, Jae-Eun;Oh, In-Bo;Song, Sang-Keun;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.153-163
    • /
    • 2012
  • The seasonal variations of ozone ($O_3$) concentrations were investigated with regard to the relationship between $O_3$ and wind distributions at two different sites (Jung Ang (JA): a semi-closed topography and Seo Chang (SC): a closed topography) within a valley city (Yangsan) and their comparison between these sites (JA and SC) and two non-valley sites (Dae Jeo (DJ) and Sang Nam (SN)) located downwind from coastal cities (Busan and Ulsan). This analysis was performed using the data sets of hourly $O_3$ concentrations, meteorological factors (especially, wind speed and direction), and those on high $O_3$ days exceeding the 8-h standard (60 ppb) during 2008-2009. In summer and fall (especially in June and October), the monthly mean values of the daily maximum $O_3$ concentrations and the number of high $O_3$ days at JA (and SC) were relatively higher than those at DJ (and SN). The increase in daytime $O_3$ concentrations at JA in June was likely to be primarily impacted by the transport of $O_3$ and its precursors from the coastal emission sources in Busan along the dominant southwesterly winds (about 5 m/s) under the penetration of sea breeze condition, compared to other months and sites. Such a phenomenon at SC in October was likely to be mainly caused by the accumulation of $O_3$ and its precursors due to the relatively weak winds under the localized stagnant weather condition rather than the contribution of regional transport from the emission sources in Busan and Ulsan.

Experimental Investigation for the Shroud Separation in the Supersonic Flow (초음속 비행환경 조건에서의 슈라우드 분리시험 연구)

  • Kim, Jung-Young;Lee, Dong-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.539-549
    • /
    • 2017
  • In this paper, experimental studies on the shroud separation were performed to investigate characteristics of the shroud separation at mach 3. Shroud separation tests were carried out in the vertical free-jet wind tunnel that is capable of testing separable structures. A shroud model was miniaturized to meet test objectives and test section dimensions of the wind tunnel. Pneumatic Locking and separation mechanisms were designed considering external force due to free stream. High speed cameras were used to record the shroud motion and unsteady shock patterns over the deploying shrouds during the shroud separation process. Also, unsteady pressures on the nose surface were measured by using the pressure sensors. Through the tests, the measurement data necessary for researches on the shroud separation technology were obtained. Shroud separation behaviors and characteristics of unsteady pressure on the nose surface for each external flow conditions were analyzed.

Case Studies on Freezing Rain over the Korean Peninsula Using KLAPS (KLAPS를 이용한 한반도 어는비 사례 연구)

  • Kwon, Hui-Nae;Byun, Hi-Ryong;Park, Chang-Kyun
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.389-405
    • /
    • 2015
  • In this study, the occurrence circumstances of 3 cases (12 Jan 2006, 11 Jan 2008, 22 Feb 2009) when the freezing rain was observed at more than two observatories in a day with more than three times each observatory, were investigated. Following the advanced study about the same cases, we have tried to find more delicate differences in using the Korea Local Analysis and Prediction System (KLAPS; 5 km reanalysis data) that has the smallest grid scale at current situation. As results, three common characteristics are found: (1) Just before the occurrence of the freezing rain, the wind direction was consistently continuous and the wind speed was constant or gradually increased for at least 3 hr more. (2) Surface air temperature (Relative humidity) was respectively $3.08^{\circ}C$ (28.76%), $0.47^{\circ}C$ (50.07%) and $-3.60^{\circ}C$ (71.07%) 3 hr ago to break out the freezing rain. It means the freezing rain occurs in a wide range of atmospheric environments. However, the closer it got to the occurrence time of the freezing rain, the closer the surface air temperature was to $0^{\circ}C$, and the bigger the humidity of the surface air was. (3) The liquid precipitation formed in the upper atmosphere, met a cold advection bellower than 950 hPa level and suspected to be changed to the super-cooled condition.

Application of High Resolution Land Use Data on the Possibility to Mitigate Urban Thermal Environment (고해상도 지표자료를 이용한 도시 열환경 완화효과 가능성에 관한 연구)

  • Lee, Kwi-Ok;Lee, Hyun-Ju;Lee, Hwa-Woon
    • Journal of Environmental Science International
    • /
    • v.18 no.4
    • /
    • pp.423-434
    • /
    • 2009
  • In recent years, the urban thermal environment has become worse, such as days on which the temperature goes above $30^{\circ}C$, sultry nights and heat stroke increase, due to the changes in terrestrial cover such as concrete and asphalt and increased anthropogenic heat emission accompanied by artificial structure. The land use type is an important determinant to near-surface air temperature. Due to these reasons we need to understand and improve the urban thermal environment. In this study, the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model(MMS) was applied to the metropolitan of Daegu area in order to investigate the influence of land cover changes and urban modifications increase of Albedo to the surface energy budget on the simulated near-surface air temperature and wind speed. The single urban category in existing 24-category U.S. Geological survey land cover classification used in MM5 was divided into 6 classes to account for heterogeneity of urban land cover. As a result of the numerical simulation intended for the metropolitan of Daegu assumed the increase of Albedo of roofs, buildings, or roads, the increase of Albedo (Cool scenario)can make decrease radiation effect of surface, so that it caused drops in ambient air temperature from 0.2 to 0.3 on the average during the daylight hours and smaller (or near-zero) decrease during the night. The Sensible heat flux and Wind velocity is decreased. Modeling studies suggest that increased surface albedo in urban area can reduce surface and air temperatures near the ground and affect related meteorological parameters such as winds, surface air temperature and sensible heat flux.

Study on Computational Fluid Dynamics(CFD) simulation for NOx dispersion around combined heat and power plant (열병합발전소 질소산화물 확산에 관한 전산유체역학 simulation 연구)

  • Kim, Ji-Hyun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.62-71
    • /
    • 2015
  • In order to deal with the globally increasing electric power demand and reduce $CO_2$ emission, complex thermoelectric power plants are being constructed in densely populated downtown areas. As the environmental regulations are continuously strengthened, various facilities like low NOx burner and SCR are being installed to reduce NOx emission. This study is applied using the TMS emission of $NO_2$ from combined heat and power plant located in Goyang-si Gyeonggi-do. Applying data to the computational fluid dynamics(CFD), and compared with the actual measurement results. It is judged that even though there might be differences between actual measurements and CFD results due to the instant changes of wind direction and wind speed according to measurement time during measurement period, modeling results and actual measurement results showed similar concentration at most forecasting areas and therefore, the forecasting concentration could be deducted which is close to actual measurement by calculating the contribution concentration considering the surrounding concentration in the future.

Analysis of Meteorological Features and Prediction Probability Associated with the Fog Occurrence at Chuncheon (춘천의 안개발생과 관련된 기상특성분석 및 수치모의)

  • Lee Hwa Woon;Lee Kwi Ok;Baek Seung-Joo;Kim Dong Hyeok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.303-313
    • /
    • 2005
  • In this study, meteorological characteristics concerning the occurrence of fog are analyzed using 4-years $(2000\~2003)$ data at Chuncheon and the probability of prediction is investigated. From the analysis of meteorological characteristics, the fog at Chuncheon occurred before sunrise time and disappeared after that time and lasted for $2\~4$ hours. When fog occurred, on the whole, wind direction was blew the northerly and wind speed was below 2.1m/s. Especially, about $42\%$ of foggy day fell on the calm $(0\~0.2\;ms^{-1})$ conditions. The difference between air temperature and dew point temperature near the surface were mainly less than $2^{\circ}C$. For the lack of water surface temperature, the water surface temperature was calculated by using Water Quality River Reservoir System (WQRRS) and then it was used as the surface boundary condition of MM5. The numerical experiment was carried out for 2 days from 1300 LST on 14 October 2003 to 1300 LST on 16 October 2003 and fog was simulated at dawn on 15 and 16 October 2003. Simulated air temperature and dew point temperature indicate the similar tendency to observation and the simulated difference between air temperature and dew point temperature has also the similar tendency within $2^{\circ}C$. Thus, the occurrence of fog is well simulated in the terms of the difference between air temperature and dew point temperature. Horizontal distribution of the difference between air temperature and dew point temperature from the numerical experiment indicates occurrence, dissipation and lasting time of fog at Chuncheon. In Chuncheon, there is close correlation between the frequency of fog day and outflow from Soyang reservoir and high frequency of occurrence due to the difference between air and cold outlet water temperature.

Statistical Analysis of Low-latitude Pi2 Pulsations Observed at Bohyun Station in Korea

  • Jun, Chae-Woo;Kim, Khan-Huk;Kwon, Hyuck-Jin;Lee, Dong-Hun;Lee, Ensang;Park, Young-Deuk;Hwang, Junga
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.25-32
    • /
    • 2013
  • We statistically investigated the properties of low-latitude Pi2 pulsations using Bohyun (BOH, Mlat = $29.8^{\circ}$, L = 1.35) ground magnetometer data in 2008. For this 1-year interval, 582 Pi2 events were identified when BOH was in the nightside from 1800 to 0600 local times. We found the following Pi2 characteristics. (1) The occurrence distribution of Pi2s is relatively constant in local times. (2) The Pi2 frequency varies in local times. That is, Pi2 pulsations in postmidnight sector had higher frequency than in premidnight sector. (3) Pi2 power in premidnight sector is stronger than in postmidnight sector. (4) Pi2 frequency has positive correlation with solar wind speed and AE index. (5) Pi2 power has not a clear correlation with solar wind parameters. This indicates that Pi2 power is not controlled by external sources. (6) It is found that the most probable-time between Pi2 onsets is ${\Delta}t$ ~ 37.5 min: This is interpreted to be the period between Pi2 pulsations when they occur cyclically. We suggest that ${\Delta}t$ ~ 37.5 min is the occurrence rate of reconnection of open field lines in the tail lobe.