• Title/Summary/Keyword: Wind Profile

Search Result 280, Processing Time 0.023 seconds

River Terraces and Geomorphic Development of Subi Basin, Yeongyang (하안단구와 수비분지의 지형발달)

  • Son, Myoung Won
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.2
    • /
    • pp.15-25
    • /
    • 2017
  • Subi basin is located at the crestline of Taebaek mountains. This paper aims to elucidate the geomorphic development of Subi basin through the analysis of river terraces built in Wangpi-cheon and Banbyeon-cheon. Wangpi-cheon flows northeastward from Subi basin, and Banbyeon-cheon flows southward at the west of Subi basin. Absolute age of terrace is measured by means of OSL methodology, long profile of Wangpi-cheon is made up with 10m interval contour line, and the elevation above river bed of high terraces is measured at the end part of terrace. The results are as follow: Firstly, high river terraces of Subi basin, Wangpi-cheon and Banbyeon-cheon are formed about 40 kyr(MIS 3) being interstadial stage of last glacial period. Secondly, the elevation above river bed of high terraces of Wangpi-cheon and Banbyeon-cheon tends to increase toward upstream. It means that the uplift of Taebaek Mountains influences considerably the formation of their terraces. Thirdly, the elevation above river bed of high terraces at the reach from Seomchon to Suha-ri of Wangpi-cheon tends to decrease toward upstream. This section is captured from Banbyeon-cheon flowing in the opposite direction. River piracy has occurred from the time of formation of Suha-ri high terrace to the time of formation of Hantee wind gap. Finally, for fluvial system of Wangpi-cheon to establish dynamic equilibrium, topographic axis will move toward Banbyeon-cheon.

Water quality big data analysis of the river basin with artificial intelligence ADV monitoring

  • Chen, ZY;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.219-225
    • /
    • 2022
  • 5th Assessment Report of the Intergovernmental Panel on Climate Change Weather (AR5) predicts that recent severe hydrological events will affect the quality of water and increase water pollution. To analyze changes in water quality due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed, and solar radiation) were compiled into a representative concentration curve (RC), defined using 8.5. AR5 and future use are calculated based on land use. Semi-distributed emission model Calculate emissions for each target period. Meteorological factors affecting water quality (precipitation, temperature, and flow) were input into a multiple linear regression (MLR) model and an artificial neural network (ANN) to analyze the data. Extensive experimental studies of flow properties have been carried out. In addition, an Acoustic Doppler Velocity (ADV) device was used to monitor the flow of a large open channel connection in a wastewater treatment plant in Ho Chi Minh City. Observations were made along different streams at different locations and at different depths. Analysis of measurement data shows average speed profile, aspect ratio, vertical position Measure, and ratio the vertical to bottom distance for maximum speed and water depth. This result indicates that the transport effect of the compound was considered when preparing the hazard analysis.

The Development of an Intelligent Home Energy Management System Integrated with a Vehicle-to-Home Unit using a Reinforcement Learning Approach

  • Ohoud Almughram;Sami Ben Slama;Bassam Zafar
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.87-106
    • /
    • 2024
  • Vehicle-to-Home (V2H) and Home Centralized Photovoltaic (HCPV) systems can address various energy storage issues and enhance demand response programs. Renewable energy, such as solar energy and wind turbines, address the energy gap. However, no energy management system is currently available to regulate the uncertainty of renewable energy sources, electric vehicles, and appliance consumption within a smart microgrid. Therefore, this study investigated the impact of solar photovoltaic (PV) panels, electric vehicles, and Micro-Grid (MG) storage on maximum solar radiation hours. Several Deep Learning (DL) algorithms were applied to account for the uncertainty. Moreover, a Reinforcement Learning HCPV (RL-HCPV) algorithm was created for efficient real-time energy scheduling decisions. The proposed algorithm managed the energy demand between PV solar energy generation and vehicle energy storage. RL-HCPV was modeled according to several constraints to meet household electricity demands in sunny and cloudy weather. Simulations demonstrated how the proposed RL-HCPV system could efficiently handle the demand response and how V2H can help to smooth the appliance load profile and reduce power consumption costs with sustainable power generation. The results demonstrated the advantages of utilizing RL and V2H as potential storage technology for smart buildings.

Analysis of Uncertainty in Ocean Color Products by Water Vapor Vertical Profile (수증기 연직 분포에 의한 GOCI-II 해색 산출물 오차 분석)

  • Kyeong-Sang Lee;Sujung Bae;Eunkyung Lee;Jae-Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1591-1604
    • /
    • 2023
  • In ocean color remote sensing, atmospheric correction is a vital process for ensuring the accuracy and reliability of ocean color products. Furthermore, in recent years, the remote sensing community has intensified its requirements for understanding errors in satellite data. Accordingly, research is currently addressing errors in remote sensing reflectance (Rrs) resulting from inaccuracies in meteorological variables (total ozone, pressure, wind field, and total precipitable water) used as auxiliary data for atmospheric correction. However, there has been no investigation into the error in Rrs caused by the variability of the water vapor profile, despite it being a recognized error source. In this study, we used the Second Simulation of a Satellite Signal Vector version 2.1 simulation to compute errors in water vapor transmittance arising from variations in the water vapor profile within the GOCI-II observation area. Subsequently, we conducted an analysis of the associated errors in ocean color products. The observed water vapor profile not only exhibited a complex shape but also showed significant variations near the surface, leading to differences of up to 0.007 compared to the US standard 62 water vapor profile used in the GOCI-II atmospheric correction. The resulting variation in water vapor transmittance led to a difference in aerosol reflectance estimation, consequently introducing errors in Rrs across all GOCI-II bands. However, the error of Rrs in the 412-555 nm due to the difference in the water vapor profile band was found to be below 2%, which is lower than the required accuracy. Also, similar errors were shown in other ocean color products such as chlorophyll-a concentration, colored dissolved organic matter, and total suspended matter concentration. The results of this study indicate that the variability in water vapor profiles has minimal impact on the accuracy of atmospheric correction and ocean color products. Therefore, improving the accuracy of the input data related to the water vapor column concentration is even more critical for enhancing the accuracy of ocean color products in terms of water vapor absorption correction.

Long-term and Real-time Monitoring System of the East/Japan Sea

  • Kim, Kuh;Kim, Yun-Bae;Park, Jong-Jin;Nam, Sung-Hyun;Park, Kyung-Ae;Chang, Kyung-Il
    • Ocean Science Journal
    • /
    • v.40 no.1
    • /
    • pp.25-44
    • /
    • 2005
  • Long-term, continuous, and real-time ocean monitoring has been undertaken in order to evaluate various oceanographic phenomena and processes in the East/Japan Sea. Recent technical advances combined with our concerted efforts have allowed us to establish a real-time monitoring system and to accumulate considerable knowledge on what has been taking place in water properties, current systems, and circulation in the East Sea. We have obtained information on volume transport across the Korea Strait through cable voltage measurements and continuous temperature and salinity profile data from ARGO floats placed throughout entire East Sea since 1997. These ARGO float data have been utilized to estimate deep current, inertial kinetic energy, and changes in water mass, especially in the northern East Sea. We have also developed the East Sea Real-time Ocean Buoy (ESROB) in coastal regions and made continual improvements till it has evolved into the most up-to-date and effective monitoring system as a result of remarkable technical progress in data communication systems. Atmospheric and oceanic measurements by ESROB have contributed to the recognition of coastal wind variability, current fluctuations, and internal waves near and off the eastern coast of Korea. Long-tenn current meter moorings have been in operation since 1996 between Ulleungdo and Dokdo to monitor the interbasin deep water exchanges between the Japanese and Ulleung Basins. In addition, remotely sensed satellite data could facilitate the investigation of atmospheric and oceanic surface conditions such as sea surface temperature (SST), sea surface height, near-surface winds, oceanic color, surface roughness, and so on. These satellite data revealed surface frontal structures with a fairly good spatial resolution, seasonal cycle of SST, atmospheric wind forcing, geostrophic current anomalies, and biogeochemical processes associated with physical forcing and processes. Since the East Sea has been recognized as a natural laboratory for global oceanic changes and a clue to abrupt climate change, we aim at constructing a 4-D continuous real-time monitoring system, over a decade at least, using the most advanced techniques to understand a variety of oceanic processes in the East Sea.

Comparison of an Analytic Solution of Wind-driven Current and all (x-$\sigma$) Numerical Model (취송류의 해석위와 (x-$\sigma$) 수치모형과의 비교)

  • 이종찬;최병호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.4
    • /
    • pp.208-218
    • /
    • 1992
  • Analytic solutions for the gradient of surface elevation and vertical profiles of velocity driven by the wind stress in the one-dimensional rectangular basin were obtained under the assumption of steady-state. The approach treats the bottom frictional stress $\tau$$_{b}$ as known and includes vertically varying eddy viscosity $textsc{k}$$_{M}$, which is constant, linear and quadratic of water depth. When the $\tau$$_{b}$ is param-terized with surface stress, depth averaged velocity and bottom velocity, the result shows the relation of the no-slip bottom velocity condition and the bottom frictional stress $\tau$$_{b}$. The results of a mode splitted, (x-$\sigma$) coordinate, numerical model were compared with the derived analytic solutions. The comparison was made for the case such that $textsc{k}$$_{M}$ is the constant, linear and quadratic function of water depth. In the case of constant $textsc{k}$$_{M}$, the gradient of surface elevation and vertical profiles of velocity are discussed for a uniform depth, a mild slope and a relatively steep slope. When $textsc{k}$$_{M}$ is a linear and quadratic function of water depth, the vertical structures of velocities are discussed for various $\tau$$_{b}$. The result of the comparison shows that the vertical structure of velocities depends not only on the value of $textsc{k}$$_{M}$ but also on the profile of $textsc{k}$$_{M}$ and bottom stress $\tau$$_{b}$. Model results were in a good agreement with the analytic solutions considered in this study.his study.y.his study.

  • PDF

Water Quality in Hwawon Coastal Sea of Korea for Rainy and Dry Season (건기와 우기시 화원면 주변 해역의 수질 비교)

  • Kim, Do-Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.193-200
    • /
    • 2007
  • The purpose of this study is investigate to water quality, pH, turbidity, salinity, nutrients, SS, DO, COD, ${NH_4}^+$-N, ${NO_2}^-+{NO_3}^-$-N, TN, TP, ${PO_4}^{3-}$-P in ditches and seawater of the Hwawon, southwestern coastal area of Korea. Two stations of the ditch, one station at outfall from reservoir of the coastal development and 15 stations of seawater were measured in August just after a 96.5 mm rainfall and in dry season of November 2006. The sampling time were divided into a rainy and dry season based on turbidity, SS, salinity and nutrients difference of distributions that was evidence as a inflow of pollutants from the developing coastal land area. The pH, turbidity, salinity and SS were high and showed different from between surface and bottom in near the developing of coastal land than the other stations after a strong rainfall over 90 mm while it were not varied in vertical and horizontal concentration profile in dry season. The other nutrients were showed the same concentrations gradient patterns. In opposition to expectations, the SS in dry season was higher than in the rainy season due to upwelling by the wind and strong current. It appears that the researched coastal seawater qualities were mainly effected by the inflow of freshwater from the ditches and drain from the reservoir of the developing land area during strong rainfall while the seawater qualities were mainly effected by the wind and strong current in dry season.

  • PDF

Interference of Sulphur Dioxide on Balloon-borne Electrochemical Concentration Cell Ozone Sensors over the Mexico City Metropolitan Area

  • Kanda, Isao;Basaldud, Roberto;Horikoshi, Nobuji;Okazaki, Yukiyo;Benitez-Garcia, Sandy-Edith;Ortinez, Abraham;Benitez, Victor Ramos;Cardenas, Beatriz;Wakamatsu, Shinji
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.162-174
    • /
    • 2014
  • An abnormal decrease in ozonesonde sensor signal occurred during air-pollution study campaigns in November 2011 and March 2012 in Mexico City Metropolitan Area (MCMA). Sharp drops in sensor signal around 5 km above sea level and above were observed in November 2011, and a reduction of signal over a broad range of altitude was observed in the convective boundary layer in March 2012. Circumstantial evidence indicated that $SO_2$ gas interfered with the electrochemical concentration cell (ECC) ozone sensors in the ozonesonde and that this interference was the cause of the reduced sensor signal output. The sharp drops in November 2011 were attributed to the $SO_2$ plume from Popocat$\acute{e}$petl volcano southeast of MCMA. Experiments on the response of the ECC sensor to representative atmospheric trace gases showed that only $SO_2$ could cause the observed abrupt drops in sensor signal. The vertical profile of the plume reproduced by a Lagrangian particle diffusion simulation supported this finding. A near-ground reduction in the sensor signal in March 2012 was attributed to an $SO_2$ plume from the Tula industrial complex north-west of MCMA. Before and at the time of ozonesonde launch, intermittent high $SO_2$ concentrations were recorded at ground-level monitoring stations north of MCMA. The difference between the $O_3$ concentration measured by the ozonesonde and that recorded by a UV-based $O_3$ monitor was consistent with the $SO_2$ concentration recorded by a UV-based monitor on the ground. The vertical profiles of the plumes estimated by Lagrangian particle diffusion simulation agreed fairly well with the observed profile. Statistical analysis of the wind field in MCMA revealed that the effect Popocat$\acute{e}$petl was most likely to have occurred from June to October, whereas the effect of the industries north of MCMA, including the Tula complex, was predicted to occur throughout the year.

Antioxidative Activity of Korean Wild Leaf Vegetables : Pleurospemum Kamtschaticum, Aderophora Remotiflor and Aster Glheni

  • Cho, Youn-Ok;Kim, Young-Nam;Ahn, Hee-Jung
    • Nutritional Sciences
    • /
    • v.4 no.2
    • /
    • pp.85-90
    • /
    • 2001
  • The purpose of this study was to evaluate the antioxidative potential of Korean wild leaf vegetables in vivo as well as in vitro. The antloxidative activities of Pleurospemum kamtschaticum, Aderophora remotiflor and Aster gfheni were evaluated as a reference for Spinacia oleracea. Fifty rats were find either a control diet or one of several vegetable diets for 4 weeks. The level of thiobarbituric acid reactive substance (TBARS) and the activity of catalase and superoxide dismutase (SOD) in the liver were compared. The levels of total cholesterol (TC), high density lipoprotein cholesterol (HDL-C) and triglyceride (TG) in plasma were also compared. Also, the contents of $\beta$-carotene, vitamin C, vitamin E and total phenolic compound, including flavonoid and thiobarbituric acid (TBA) value using linoleic acid model system, were measured in Korean wind leaf vegetables. The TBARS values of Aderophora remotiflor and Aster giheni tended to be lower than that of Spinacia olerncea. The SOD activity of Artrr glheffi was significantly higher than that of Spinacia oleracea and reached 265% that of the control animals, whereas there was no difference between the control animals and the vegetable diet animals in terms of catalase activity. Compared to the control animals, TG and TC levels were significantly solver and showed a lower artheriosclerotic index. TBA values of Pleurospemum Kamschaticum and Aderophora remptiflor were only 18% of control value. TBA value of Spinacia olerucra was 41% of control value. These results suggest that Aderophora remotinor and Aster glheni could have antioxidative potency in vivo as well as in vitro and potential value far functional flood to improve the plasma lipid profile. flavonoid and phenolic compounds could be the major contributing factor in the antioxidative potential of Aderophora remotiflor and Aster glheni.

  • PDF

Application of Mutiple Geophysical Methods in Investigating the Lava Tunnel of Manjanggul in Cheju Island (제주도 만장굴에 대한 복합 지구물리탐사 기법의 적용)

  • Kwon, Byung-Doo;Lee, Heui-Soon;Oh, Seok-Hoon;Lee, Chun-Ki
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.535-545
    • /
    • 1998
  • Various geophysical methods have been applied to the survey of the lava tunnel of Manjanggul in Cheju Island to study the effectiveness of each method in investigating underground tunnels. The surveys employing gravity, magnetic, electrical, AMT and VLF methods were carried out along seven profiles across the Manjanggul; especially, all the five methods were used on one representative profile. Several aspects of different methods pertinent to their use in investigation of underground tunnels have been noted. The electrical method employing the dipole-dipole array appeared to be the most effective one among five methods. Therefore, we have tested the electrical method more carefully by using various electrode spacings, and obtained successful resistivity sections showing the existence of lava tunnels. The gravity method provided relatively successful responses associated with the tunnel although the gravity readings were contaminated by wind blowing during the survey. The gravity data were also useful for the quantitative modeling study. The magnetic data were also successful in delineating the tunnel qualitatively. The AMT data were not successful because the used frequency band was not appropriate in detecting very shallow target. The VLF data were severely influenced by the neighboring noise sources such as power lines and were not successful in detecting the tunnel responses. The comprehensive result of electrical, gravity and magnetic surveys suggests that undiscovered lava tunnels may exist adjacent to the Manjanggul.

  • PDF