• Title/Summary/Keyword: Wind Pressure Coefficients

Search Result 202, Processing Time 0.025 seconds

Analysis of External Peak Pressure Coefficients for Cladding in Elliptical Retractable Dome Roof by Wind Tunnel Test (풍동 실험을 통한 타원형 개폐식 돔 지붕의 외장재용 풍압 계수 분석)

  • Lee, Jong-Ho;Kim, Yong-Chul;Cheon, Dong-Jin;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 2020
  • This study investigates the wind pressure characteristics of elliptical plan retractable dome roof. Wind tunnel experiments were performed on spherical dome roofs with varying wall height-span ratios (0.1~0.5) and opening ratios (0%, 10%, 30% and 50%), similar to previous studies of cirular dome roofs. In previous study, wind pressure coefficients for open dome roofs have been proposed since there are no wind load criteria for open roofs. However, in the case of Eeliptical plan retractable dome roof, the wind pressure coefficient may be largely different due to the presence of the longitudinal direction and transverse direction. The analysis results leads to the exceeding of maximum and minimum wind pressure coefficients KBC2016 code.

Field measurement and CFD simulation of wind pressures on rectangular attic

  • Peng, Yongbo;Zhao, Weijie;Ai, Xiaoqiu
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.471-488
    • /
    • 2019
  • Wind pressure is a critical argument for the wind-resistant design of structures. The attempt, however, to explore the wind pressure field on buildings still encounters challenges though a large body of researches utilizing wind tunnel tests and wind field simulations were carried out, due to the difficulty in logical treatments on the scale effect and the modeling error. The full-scale measurement has not yet received sufficient attention. By performing a field measurement, the present paper systematically addresses wind pressures on the rectangular attic of a double-tower building. The spatial and temporal correlations among wind speed and wind pressures at measured points are discussed. In order to better understand the wind pressure distribution on the attic facades and its relationship against the approaching flow, a full-scale CFD simulation on the similar rectangular attic is conducted as well. Comparative studies between wind pressure coefficients and those provided in wind-load codes are carried out. It is revealed that in the case of wind attack angle being zero, the wind pressure coefficient of the cross-wind facades exposes remarkable variations along both horizontal and vertical directions; while the wind pressure coefficient of the windward facade remains stable along horizontal direction but exposes remarkable variations along vertical direction. The pattern of wind pressure coefficients, however, is not properly described in the existing wind-load codes.

Evaluation of stress distribution with wind speed in a greenhouse structure

  • Hur, Deog-jae;Noh, Jung-Hun;Lee, Hyun ju;Song, Hyoung woon
    • Wind and Structures
    • /
    • v.27 no.5
    • /
    • pp.347-356
    • /
    • 2018
  • In this paper, stress distribution for a structurally stable greenhouse is considered in the present paper with subsequent investigation into the detailed stress distribution contour with the variation of self-weight and wind pressure level designation method under wind velocity of less than 30 m/sec. For reliable analysis, wind pressure coefficients of a single greenhouse unit were modeled and compared with experiment with correlation coefficient greater than 0.99. Wind load level was designated twofold: direct mapping of fluid dynamic analysis and conversion of modeled results into wind pressure coefficients ($C_P$). Finally, design criteria of EN1991-1-4 and NEN3859 were applied in terms of their wind pressure coefficients for comparison. $C_P$ of CFD result was low in the most of the modeled area but was high only in the first roof wind facing and the last lee facing areas. Besides, structural analysis results were similar in terms of stress distribution as per EN and direct mapping while NEN revealed higher level of stress for the last roof area. The maximum stress levels are arranged in decreasing order of mapping, EN, and NEN, generating 8% error observed between the EN and mapping results under 30 m/sec of wind velocity. On the other hand, effect of dead weight on the stress distribution was investigated via variation of high stress position with wind velocity, confirming shift of such position from the center to the forward head wind direction. The sensitivity of stress for wind velocity was less than 0.8% and negligible at wind velocity greater than 20 m/sec, thus eliminating self-weight effect.

The effects of topography on local wind-induced pressures of a medium-rise building

  • Hitchcock, P.A.;Kwok, K.C.S.;Wong, K.S.;Shum, K.M.
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.433-449
    • /
    • 2010
  • Wind tunnel model tests were conducted for a residential apartment block located within the complex terrain of The Hong Kong University of Science and Technology (HKUST). The test building is typical of medium-rise residential buildings in Hong Kong. The model study was conducted using modelling techniques and assumptions that are commonly used to predict design wind loads and pressures for buildings sited in regions of significant topography. Results for the building model with and without the surrounding topography were compared to investigate the effects of far-field and near-field topography on wind characteristics at the test building site and wind-induced external pressure coefficients at key locations on the building facade. The study also compared the wind tunnel test results to topographic multipliers and external pressure coefficients determined from nine international design standards. Differences between the external pressure coefficients stipulated in the various standards will be exacerbated when they are combined with the respective topographic multipliers.

Wind load on irregular plan shaped tall building - a case study

  • Chakraborty, Souvik;Dalui, Sujit Kumar;Ahuja, Ashok Kumar
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.59-73
    • /
    • 2014
  • This paper presents the results of wind tunnel studies and numerical studies on a '+' plan shaped tall building. The experiment was carried out in an open circuit wind tunnel on a 1:300 scale rigid model. The mean wind pressure coefficients on all the surfaces were studied for wind incidence angle of $0^{\circ}$ and $45^{\circ}$. Certain faces were subjected to peculiar pressure distribution due to irregular formation of eddies caused by the separation of wind flow. Moreover, commercial CFD packages of ANSYS were used to demonstrate the flow pattern around the model and pressure distribution on various faces. k-${\varepsilon}$ and SST viscosity models were used for numerical study to simulate the wind flow. Although there are some differences on certain wall faces, the numerical result is having a good agreement with the experimental results for both wind incidence angle.

Wind pressure characteristics for a double tower high-rise structure in a group of buildings

  • Tse, K.T.;Wang, D.Y.;Zhou, Y.
    • Wind and Structures
    • /
    • v.16 no.5
    • /
    • pp.491-515
    • /
    • 2013
  • Wind pressure characteristics on a double tower high-rise structure, which is disturbed by surrounding buildings, were investigated using large eddy simulation (LES) and 1:300 scale wind tunnel experiments. The computational simulation technique and wind tunnel experimental technique were described in detail initially. Comparisons of computational results with the experimental data have subsequently been carried out to validate the reliability of LES. Comparisons have been performed in detail for the mean and fluctuating pressure coefficients. Detailed explanations of each comparison were given in the paper. To study further on the pressure coefficients on the building surfaces, parametric studies on shape coefficient and spatial correlation were performed and investigated. The numerical and experimental results presented in this paper advance understanding on wind field around buildings and the application of LES and wind tunnel tests.

Estimate of the Fluctuating Pressure Distribution of Tall Building under Hazard Fluctuating Wind Load (재난변동풍하중을 받는 고층건물의 변동풍압분포의 평가)

  • Hwang, Jin Cheol
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.2
    • /
    • pp.49-56
    • /
    • 2013
  • In this paper, used by the boundary layer wind tunnel test, have conducted a series of wind tunnel experiments, i.e. test the mean velocity profile regarding the surface roughness, turbulence intensity and power spectrum measured by augmentation device. After that, to provide data relevant for the preliminary design step of tall building hazard fluctuating wind loads may be obtained fluctuating pressure coefficients, fluctuating pressure spectrum, autocorrelation coefficients by the boundary layer wind tunnel test. From the results of experiments, this study can be obtained conclusions as follows. 1. We know the fact that the mean velocity profile and the turbulence intensity are well fitted natural wind flow in the boundary layer wind tunnel. 2. The satisfactory agreement of velocity spectrum can be obtained from the compare of fluctuating power spectrum and Von Karman spectrum. 3. We know the fact that the fluctuating pressure spectrums distributed peak at 0.01 Hz-0.1 Hz in the windward surfaces and at 0.1 Hz in the leeward surfaces. 4. We know the fact that the autocorrelation coefficients distributed stationary random processes with application time of hazard fluctuating wind loads.

Experimental investigation of Reynolds number effects on 2D rectangular prisms with various side ratios and rounded corners

  • Wang, Xinrong;Gu, Ming
    • Wind and Structures
    • /
    • v.21 no.2
    • /
    • pp.183-202
    • /
    • 2015
  • Experiments on two-dimensional rectangular prisms with various side ratios (B/D=2, 3, and 4, where B is the along-wind dimension, and D is the across-wind dimension) and rounded corners (R/D=0%, 5%, 10%, and 15%, where R is the corner radius) are reported in this study. The tests were conducted in low-turbulence uniform flow to measure the wind pressures on the surfaces of 12 models for Reynolds numbers ranging from $1.1{\times}10^5$ to $6.8{\times}10^5$. The aerodynamic force coefficients were obtained by integrating the wind pressure coefficients around the model surface. Experimental results of wind pressure distributions, aerodynamic force coefficients, and Strouhal numbers are presented for the 12 models. The mechanisms of the Reynolds number effects are revealed by analyzing the variations of wind pressure distributions. The sensitivity of aerodynamic behavior to the Reynolds number increases with increasing side ratio or rounded corner ratio for rectangular prisms. In addition, the variations of the mean pressure distributions and the pressure correlations on the side surfaces of rectangular prisms with the rounded corner ratio are analyzed at $Re=3.4{\times}10^5$.

Wind flow characteristics and their loading effects on flat roofs of low-rise buildings

  • Zhao, Zhongshan;Sarkar, Partha P.;Mehta, Kishor C.;Wu, Fuqiang
    • Wind and Structures
    • /
    • v.5 no.1
    • /
    • pp.25-48
    • /
    • 2002
  • Wind flow and pressure on the roof of the Texas Tech Experimental Building are studied along with the incident wind in an effort to understand the wind-structure interaction and the mechanisms of roof pressure generation. Two distinct flow phenomena, cornering vortices and separation bubble, are investigated. It is found for the cornering vortices that the incident wind angle that favors formation of strong vortices is bounded in a range of approximately 50 degrees symmetrical about the roof-corner bisector. Peak pressures on the roof corner are produced by wind gusts approaching at wind angles conducive to strong vortex formation. A simple analytical model is established to predict fluctuating pressure coefficients on the leading roof corner from the knowledge of the mean pressure coefficients and the incident wind. For the separation bubble situation, the mean structure of the separation bubble is established. The role of incident wind turbulence in pressure-generation mechanisms for the two flow phenomena is better understood.

Comparison between wind load by wind tunnel test and in-site measurement of long-span spatial structure

  • Liu, Hui;Qu, Wei-Lian;Li, Qiu-Sheng
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.301-319
    • /
    • 2011
  • The full-scale measurements are compared with the wind tunnel test results for the long-span roof latticed spatial structure of Shenzhen Citizen Center. A direct comparison of model testing results to full-scale measurements is always desirable, not only in validating the experimental data and methods but also in providing better understanding of the physics such as Reynolds numbers and scale effects. Since the quantity and location of full-scale measurements points are different from those of the wind tunnel tests taps, the weighted proper orthogonal decomposition technique is applied to the wind pressure data obtained from the wind tunnel tests to generate a time history of wind load vector, then loads acted on all the internal nodes are obtained by interpolation technique. The nodal mean wind pressure coefficients, root-mean-square of wind pressure coefficients and wind pressure power spectrum are also calculated. The time and frequency domain characteristics of full-scale measurements wind load are analyzed based on filtered data-acquisitions. In the analysis, special attention is paid to the distributions of the mean wind pressure coefficients of center part of Shenzhen Citizen Center long-span roof spatial latticed structure. Furthermore, a brief discussion about difference between the wind pressure power spectrum from the wind tunnel experiments and that from the full-scale in-site measurements is compared. The result is important fundament of wind-induced dynamic response of long-span spatial latticed structures.