• 제목/요약/키워드: Wind Power

검색결과 2,995건 처리시간 0.023초

대학교 캠퍼스의 풍력자원 측정 및 분석 (Wind Resource Measurements and Analysis at the University Campus)

  • 윤재옥;김명래
    • KIEAE Journal
    • /
    • 제8권1호
    • /
    • pp.19-24
    • /
    • 2008
  • The wind-power among the new and renewable energies uses the wind, a limitless, clean and pure energy which is available at any place. It requires low installation cost compared to the generation of other renewable energies, and is easy to operate, and furthermore, can be automated for operation. Korea has been taking a great deal of interest in the development of renewable energy generating equipment, specifically wind power generation as the nation has a nearly total reliance on imported petroleum. A measuring poll 30m high was installed at a location with an altitude of 142m above the sea level in order to measure and analyze the wind power potentiality at H University's Asan Campus, and the wind velocity and wind direction were measured for 1 year. As for the wind power resource of the area adjacent to Asan campus, the Weibull Distribution coefficient was C=2.68, K =1.29 at H30m. Weibull Distribution coefficient was modified on the basis of compensated wind velocity (=3.1m/s) at H 60m, and the energy density was $42W/m^2$. AEP 223,750 KWh was forecast based on the simulation of an 800KW grade wind turbine. It is considered that the wind power generation has to be studied further in the inland zone with low wind velocity to cope with the possible exhaustion of fossil fuel and ensure a sustainable environmental preservation.

A comparison of the performance characteristics of large 2 MW and 3 MW wind turbines on existing onshore wind farms

  • Bilgili, Mehmet;Ekinci, Firat;Demirdelen, Tugce
    • Wind and Structures
    • /
    • 제32권2호
    • /
    • pp.81-87
    • /
    • 2021
  • The aim of the current study is to compare the performance of large 2 MW and 3 MW wind turbines operating on existing onshore wind farms using Blade Element Momentum (BEM) theory and Angular Momentum (AM) theory and illustrate the performance characteristic curves of the turbines as a function of wind speed (U∞). To achieve this, the measurement data obtained from two different Wind Energy Power Plants (WEPPs) located in the Hatay region of Turkey was used. Two different horizontal-axis wind turbines with capacities of 2 MW and 3 MW were selected for evaluation and comparison. The hub-height wind speed (UD), turbine power output (P), atmospheric air temperature (Tatm) and turbine rotational speed (Ω) data were used in the evaluation of the turbine performance characteristics. Curves of turbine power output (P), axial flow induction factor (a), turbine rotational speed (Ω), turbine power coefficient (CP), blade tip speed ratio (λ), thrust force coefficient (CT) and thrust force (T) as a function of U∞ were obtained for the 2 MW and 3 MW wind turbines and these characteristic curves were compared. Results revealed that, for the same wind speed conditions, the higher-capacity wind turbine (3 MW) was operating at higher turbine power coefficient rates, while rotating at lower rotational speed ratios than the lower-capacity wind turbine (2 MW).

가변 풍력발전 시스템의 최대출력 제어를 위한 Fuzzy 제어기 설계 (A Fuzzy Logic Controller Design for Maximum Power Extraction of Variable Speed Wind Energy Conversion System)

  • 김재곤;허욱열;김병륜
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권11호
    • /
    • pp.753-759
    • /
    • 2004
  • This paper presents a modeling and simulation of a fuzzy controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

제주계통 풍력발전단지의 무효전력 특성 분석 (Analysis of Reactive Power Characteristic for Wind Farms in Jeju System)

  • 최영도;박영신;전동훈;윤기갑;박상호
    • 신재생에너지
    • /
    • 제6권2호
    • /
    • pp.19-26
    • /
    • 2010
  • Experiences in wind farm operation are very limited in Korea, and the foundation for setting standards in power system connection is weak. Therefore, connection and operation standards for wind farms in other countries must be reviewed and power system operation criteria need to be established in order to set up connection standards and optimal operation plans according to the Jeju power system. In this study, reactive power control characteristics of a wind farm were analyzed using a wind farm model of the Jeju power system to propose power system connection operation standards for wind generation within the Jeju power system. Also, change in characteristics of the power system for the application of each reactive power control standard was confirmed, and the results were verified through trial tests arm was analyzed.

복합발전 풍력-디젤 하이브리드 시스템 설치 지역의 전력품질 분석 (Power Quality Analysis of Wind-Diesel Hybrid Generation System Installation Area)

  • 안해준;김현구;김석우;고석환;장길수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.539-541
    • /
    • 2009
  • A severely cold weather condition of King Sejong Station, Antarctica becomes a very severe condition for an installation/operation of wind generation system. When the existing wind generation system works, it may cause a damage and destruction of wind generation system and can bring about big problems in terms of the power quality. Accordingly, it is essential to obtain technologies for the installation and operation of small wind generation system for the polar region's wind generation, and to assess and demonstrate the performance in the severely-cold environment and the polar wind generation system's development, supplementation, alteration. Also, as the available power of King Sejong Station, Antarctica, the diesel generator has been mainly used, and the wind generator has been used in the hybrid form. Wind generation and diesel generation has the different load following control each other. In the wind generation, the generated power very rapidly changes according to the change of the velocity of the wind. On the other hand, the diesel generation shows very gentle change in the velocity of output. Therefore, the study is intended to analyze the 10kw small wind generator-diesel generator's power quality of King Sejong Station, Antarctica, which is the hybrid system installation area.

  • PDF

풍력발전의 최대전력점 추종제어 방법에 관한 연구 (A study on the Maximum Power Point Tracking Control System of Wind Power Generation)

  • 고석철;이재;임성훈;강형곤;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.153-156
    • /
    • 2001
  • Maximum Power Point Tracking(MPPT) is used in wind power generation systems to maximize wind power turbin output power, irrespective of wind speed conditions and of the load electrical characteristics. In this paper we do the equivalent modeling the mechanical energy of wind power turbine according to wind speed into the synchronous generator. We analyse the equivalent modeling output part of rectifier into DC/DC converter input part theoretically. We design a control algorithm for variable voltage according to wind speed intensity and density so that load voltage of chopper is controlled steadily using the maximum power point tracking (MPPT) control method. We analyse a battery charging characteristics and a charging circuit for power storage enabling the supply of stable power to the load. We design a system and do the modeling of it analytically so that it supplies a stable power to the load by constructing a DC-AC inverter point. Also we design a charging circuit usable in actual wind power generation system of 30kW and confirm its validity.

  • PDF

풍력발전의 최대전력점 추종제어 방법에 관한 연구 (A study on the Maximum Power Point Tracking Control System of Wind Power Generation)

  • 고석철;이재;임성훈;강형곤;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.153-156
    • /
    • 2001
  • Maximum Power Point Tracking(MPPT) Is used in wind power generation systems to maximize wind power turbin output power, irrespective of wind speed conditions and of the load electrical characteristics. In this paper we do the equivalent modeling the mechanical energy of wind power turbine according to wind speed into the synchronous generator. We analyse the equivalent modeling output part of rectifier into DC/DC converter input part theoretically. We design a control algorithm for variable voltage according to wind speed intensity and density so that load voltage of chopper is controlled steadily using the maximum power point tracking(MPPT) control method. We analyse a battery charging characteristics and a charging circuit for power storage enabling the supply of stable power to the load. We design a system and do the modeling of it analytically so that it supplies a stable power to the load by constructing a DC-AC inverter point. Also we design a charging circuit usable in actual wind power generation system of 30kW and confirm its validity.

  • PDF

도심지 산악지형의 풍력발전 입지선정을 위한 전산유동해석 수치모의 (Numerical Analysis with CFD Model for Site Designation in Urban Mountain Area)

  • 이화운;박순영;이순환;김동혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.498-500
    • /
    • 2009
  • When we urgently need to develop and supply an alternative energy, wind power is growing with much interest because it has relative low cost for generating power and small area for wind turbine. To estimate the wind power resource, it is necessary to make an observation first. Although the large wind farm and resources are near coast and mountain area, the wind energy in urban area has the strong thing of direct access to power generator. In this study, we estimate the probability of wind energy in urban mountain area using A2C (Atmospheric to CFD) model, which is used for horizontally urban scale phenomena. In the steady state results, the site C is most suitable for wind power in the point of the only wind speed. But, estimating the TKE and vertical wind shear, the site B is showing the better results than the site C.

  • PDF

3MW 풍력발전시스템 개발품의 육상풍력실증단지 조성 타당성 평가를 위한 풍황 및 지형평가 연구 (Wind Analysis and Site Assessment for Test Site of 3MW Wind Power System)

  • 우상우;이기학;이상일;박종포
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.35.2-35.2
    • /
    • 2011
  • A wind turbine power performance test is very important to wind turbine manufacturers because a wind farm developer or planner must want to define power performance characteristics and reliability of new wind turbines. Based on the IEC 61400-12-1, A wind turbine test site has to be nicely installed at flat terrain for testing. We are developing the wind power system which is IEC wind class IIa model with rated power of 3MW. KEPCO's Gochang power testing center was considered as candidates to build the test site without site calibration. This paper aims to verify the validity of the test site by using implement site assessment result that was based on IEC 61400-12-1.

  • PDF

풍력발전단지의 계통연계 운전이 배전선 보호계전에 미치는 영향 (Influence of the Interconnected Wind farm on Protection for Distribution Networks)

  • 장성일;김광호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권3호
    • /
    • pp.151-157
    • /
    • 2003
  • Wind farm interconnected with grid can supply the power into a power network not only the normal conditions, but also the fault conditions of distribution network. If the fault happened in the distribution power line with wind fm, the fault current level measured in a relaying point might be lower than that of distribution network without wind turbine generator due to the contribution of wind farm. Consequently, it may be difficult to detect the fault happened in the distribution network connected with wind generator This paper describes the effect of the interconnected wind turbine generators on protective relaying of distribution power lines and detection of the fault occurred in a power line network. Simulation results shows that the current level of fault happened in the power line with wind farm depends on the fault impedance, the fault location. the output of wind farm. and the load condition of distribution network.