• Title/Summary/Keyword: Wind Performance

Search Result 1,864, Processing Time 0.029 seconds

A simulation of wind generation for the wind turbine analysis (풍력발전기 성능평가를 위한 바람 시뮬레이션)

  • Lee, Sunggun;Suk, Sangmin;Chung, Chinhwa;Park, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.188.1-188.1
    • /
    • 2010
  • This paper describes the effort for the development of an actual wind simulation method on the wind turbine performance evaluation. It should be emphasized that the deep knowledge on real wind field is a key factor for both the design of a wind turbine and the performance evaluation. With this reason, there had been several simulation attempts to accurately match with the actual wind data. With an existing wind generation algorithm is under consideration, this study introduces several more new concepts including Van der Hoven spectrum being implemented in different methodology. Also this paper will compare the result from the wind simulations by using the basic formula with that by using MATLAB and SIMULINK previously developed. In addition, like the existing wind generation algorithm, random process for actual wind field simulation and white noise are incorporated to closely produce the actual wind field models.

  • PDF

A review of the state-of-the-art in aerodynamic performance of horizontal axis wind turbine

  • Luhur, Muhammad Ramzan;Manganhar, Abdul Latif;Solangi, K.H.;Jakhrani, Abdul Qayoom;Mukwana, Kishan Chand;Samo, Saleem Raza
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.1-16
    • /
    • 2016
  • The paper presents the state-of-the-art in aerodynamic performance of the modern horizontal axis wind turbine. The study examines the different complexities involved with wind turbine blade aerodynamic performance in open atmosphere and turbine wakes, and highlights the issues which require further investigations. Additionally, the latest concept of smart blades and frequently used wind turbine design analysis tools have also been discussed. The investigation made through this literature survey shows significant progress towards wind turbine aerodynamic performance improvements in general. However, still there are several parameters whose behavior and specific role in regulating the performance of the blades is yet to be elucidated clearly; in particular, the wind turbulence, rotational effects, coupled effect of turbulence and rotation, extreme wind events, formation and life time of the wakes.

Seismic Performance of Wind-Designed Diagrid Tall Steel Buildings in Regions of Moderate Seismicity and Strong Wind

  • Kim, Seonwoong;Lee, Kyungkoo
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.155-171
    • /
    • 2013
  • This study analytically evaluated the seismic performance of wind-designed diagrid tall steel buildings in regions of moderate/low seismicity and strong winds. To this end, diagrid tall steel buildings with varying wind exposure and slenderness ratio (building height-to-width ratio) conditions were designed to satisfy the wind serviceability criteria specified in the Korean Building Code and the National Building Code of Canada. A series of seismic analyses were then performed for earthquakes having 43- and 2475- year return periods utilizing the design guidelines of tall buildings. The analyses demonstrated the good seismic performance of these wind-designed diagrid tall steel buildings, which arises because significant overstrength of the diagrid system occurs in the wind design procedure. Also, analysis showed that the elastic seismic design process of diagrid tall steel buildings might be accepted based on some wind exposures and slenderness ratios.

Performance Comparison of Two Wind Turbine Generator Systems Having Two Types of Control Methods

  • Saito, Sumio;Sekizuka, Satoshi
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.92-101
    • /
    • 2009
  • The purpose of this paper is to gain a greater understanding of the performance of practical wind turbine generating systems with differing output power controllers and controlling means for wind turbine speed. Subjected wind turbines, both equipped with an asynchronous power generator, are located at two sites and are defined as wind turbine A and wind turbine B in this study, respectively. Their performance differences are examined by measuring wind speed and electric parameters. The study suggests that both wind turbines have a clear linkage between current and output power fluctuations. Comparison of the fluctuations to wind speed fluctuation, although they are triggered primarily by wind speed fluctuation, clearly indicates the specific behaviors inherent to the respective turbine control mechanisms.

Wind Turbine Power Performance Testing using Nacelle Transfer Function (나셀 변환 함수를 이용한 풍력터빈 출력성능평가)

  • Kim, Hyeon-Wu;Ko, Kyung-Nam;Huh, Jong-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.51-58
    • /
    • 2013
  • A study on power performance testing of a wind turbine which has no met-mast at a distance of 2~4 rotor diameter was carried out using the Nacelle Transfer Function, NTF, according to IEC 61400-12-2. The wind data for this study was measured at HanKyoung wind farm of Jeju Island. The NTF was modeled using the correlation between wind speeds from the met-mast and from the wind turbine nacelle within 2~4 rotor diameter from the met-mast. The NTF was verified by the comparison of estimated Annual Energy Productions, AEPs, and binned power curves. The Nacelle Power Curve, NPC, was derived from the nacelle wind speed data corrected by NTF. The NPC of wind turbine under test and the power curve offered by the turbine manufacturer were compared to check whether the wind turbine is properly generating electricity. Overall the NPC was in good agreement with the manufacturer's power curve. The result showed power performance testing for a wind turbine which has no met-mast at a distance of 2~4 rotor diameter was successfully carried out in compliance with IEC 61400-12-2.

The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.507-535
    • /
    • 2017
  • In the strong wind shutdown state, the blade position significantly affects the streaming behavior and stability performance of wind turbine towers. By selecting the 3M horizontal axis wind turbine independently developed by Nanjing University of Aeronautics and Astronautics as the research object, the CFD method was adopted to simulate the flow field of the tower-blade system at eight shutdown positions within a single rotation period of blades. The effectiveness of the simulation method was validated by comparing the simulation results with standard curves. In addition, the dynamic property, aerostatic response, buckling stability and ultimate bearing capacity of the wind turbine system at different shutdown positions were calculated by using the finite element method. On this basis, the influence regularity of blade shutdown position on the wind-induced response and stability performance of wind turbine systems was derived, with the most unfavorable working conditions of wind-induced buckling failure of this type of wind turbines concluded. The research results implied that within a rotation period of the wind turbine blade, when the blade completely overlaps the tower (Working condition 1), the aerodynamic performance of the system is the poorest while the aerostatic response is relatively small. Since the influence of the structure's geometrical nonlinearity on the system wind-induced response is small, the maximum displacement only has a discrepancy of 0.04. With the blade rotating clockwise, its wind-induced stability performance presents a variation tendency of first-increase-then-decrease. Under Working condition 3, the critical instability wind speed reaches its maximum value, while the critical instability wind speed under Working condition 6 is the smallest. At the same time, the coupling effect between tower and blade leads to a reverse effect which can significantly improve the ultimate bearing capacity of the system. With the reduction of the area of tower shielded by blades, this reverse effect becomes more obvious.

The Development of the Monitoring System for Power performance using the Lab View (LabView를 이용한 풍력발전 성능평가용 모니터링 시스템 개발)

  • Ko, Seok-Whan;Jang, Moon-Seok;Ju, Young-Chul;Lee, Yoon-Sub
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.69-74
    • /
    • 2009
  • Monitoring system is an absolutely-required system for assessing a performance and fatigue load of the wind turbine in an on-shore wind energy experimental research complex. It was implemented for the purpose of monitoring the wind information measured from a meteorological tower at the monitoring house, and of utilizing the measured data(fatigue data and electric analyzing data of wind turbine)for the performance assessment, by using the LabVIEW program. Then, by adding the performance assessment-related data acquired from the wind turbine during the performance assessment and the data recorder for synchronizing the data of meteorological tower, the system(BusDAQ) was implemented. Because it transmitted the data by converting the output 'RS-232' of data logger which measures the wind condition into CAN protocol, the data error rate was minimized. Also, This paper is introduced to make the best use of the developed monitoring system and to explain about construct of the system and detailed data communication of its system.

Modeling of a Variable Speed Wind Turbine in Dynamic Analysis

  • Kim, Seul-Ki;Kim, Eung-Sang;Jeon, Jin-Hong
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.51-57
    • /
    • 2004
  • This paper describes the dynamic performance of a variable speed wind turbine system responding to a wide variety of wind variations. Modeling of the wind generation using power electronics interface is proposed for dynamic simulation analysis. Component models and equations are addressed and their incorporations into a transient analysis program, PSCAD/EMTDC are provided. A wind model of four components is described, which enables observing dynamic behaviors of the wind turbine resulting from wind variations. Controllable power inverter strategies are intended for capturing the maximum power under variable speed operation and maintaining reactive power generation at a pre-determined level for constant power factor control or voltage regulation control. The components and control schemes are modeled by user-defined functions. Simulation case studies provide variable speed wind generator dynamic performance for changes in wind speed

Modeling and experimental comparative analysis on the performance of small-scale wind turbines

  • Basta, Ehab;Ghommem, Mehdi;Romdhane, Lotfi;Abdelkefi, Abdessattar
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.261-273
    • /
    • 2020
  • This paper deals with the design, wind tunnel testing, and performance analysis of small wind turbines targeting low-power applications. Three different small-size blade designs in terms of size, shape, and twisting angle are considered and tested. We conduct wind tunnel tests while measuring the angular speed of the rotating blades, the generated voltage, and the current under varying resistive loading and air flow conditions. An electromechanical model is also used to predict the measured voltage and power and verify their consistency and repeatability. The measurements are found in qualitative agreement with those reported in previously-published experimental works. We present a novel methodology to estimate the mechanical torque applied to the wind turbine without the deployment of a torque measuring device. This method can be used to determine the power coefficient at a given air speed, which constitutes an important performance indicator of wind turbines. The wind tunnel tests revealed the capability of the developed wind turbines to deliver more than 1225 mW when subject to an air flow with a speed of 7 m/s. The power coefficient is found ranging between 26% and 32%. This demonstrates the aerodynamic capability of the designed blades to extract power from the wind.

Aerodynamic Analysis and System Implementation of Vertical Axis Wind Turbine using Individual Blade Pitch Control Method (개별 블레이드 피치 제어 방식을 이용한 수직축 풍력발전기의 성능 해석 및 시스템 구현)

  • Jeong, In-Oh;Lee, Yun-Han;Hwang, In-Seong;Kim, Seung-Jo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3347-3352
    • /
    • 2007
  • This paper describes a research for the performance improvement of the straight-bladed vertical axis wind turbine. To improve the performance of VAWT, the individual blade pitch control method is adopted. For the wind turbine, CFD analysis is carried out by changing blade pitch angle according to the change of wind speed and wind direction. By this method, capacity and power efficiency of VAWT are obtained according to the wind speed and rotating of rotor, and could predict the overall performance of VAWT. It was manufactured to verify performance of the experimental system that consists of rotor including four blades and base. Furthermore, torque sensor and power generator were installed. Also, active controller which can change the pitch angle of the individual blade according to the wind speed and direction was used.

  • PDF