• Title/Summary/Keyword: Wind Orientation

Search Result 62, Processing Time 0.025 seconds

Galloping analysis of roof structures

  • Zhang, Xiangting;Zhang, Ray Ruichong
    • Wind and Structures
    • /
    • v.6 no.2
    • /
    • pp.141-150
    • /
    • 2003
  • This paper presents galloping analysis of multiple-degree-of-freedom (MDOF) structural roofs with multiple orientations. Instead of using drag and lift coefficients and/or their combined coefficient in traditional galloping analysis for slender structures, this study uses wind pressure coefficients for wind force representation on each and every different orientation roof, facilitating the galloping analysis of multiple-orientation roof structures. In the study, influences of nonlinear aerodynamic forces are considered. An energy-based equivalent technique, together with the modal analysis, is used to solve the nonlinear MDOF vibration equations. The critical wind speed for galloping of roof structures is derived, which is then applied to galloping analysis of roofs of a stadium and a high-rise building in China. With the aid of various experimental results obtained in pertinent research, this study also shows that consideration of nonlinear aerodynamic forces in galloping analysis generally increases the critical wind speed, thus enhancing aerodynamic stability of structures.

Maximum Power Point Tracking Control Scheme for Grid Connected Variable Speed Wind Driven Self-Excited Induction Generator

  • El-Sousy Fayez F. M.;Orabi Mohamed;Godah Hatem
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.52-66
    • /
    • 2006
  • This paper proposes a wind energy conversion system connected to a grid using a self-excited induction generator (SEIG) based on the maximum power point tracking (MPPT) control scheme. The induction generator (IG) is controlled by the MPPT below the base speed and the maximum energy can be captured from the wind turbine. Therefore, the stator currents of the IG are optimally controlled using the indirect field orientation control (IFOC) according to the generator speed in order to maximize the generated power from the wind turbine. The SEIG feeds a (CRPWM) converter which regulates the DC-link voltage at a constant value where the speed of the IG is varied. Based on the IG d-q axes dynamic model in the synchronous reference frame at field orientation, high-performance synchronous current controllers with satisfactory performance are designed and analyzed. Utilizing these current controllers and IFOC, a fast dynamic response and low current harmonic distortion are attained. The regulated DC-link voltage feeds a grid connected CRPWM inverter. By using the virtual flux orientation control and the synchronous frame current regulators for the grid connected CRPWM inverter, a fast current response, low harmonic distortion and unity power factor are achieved. The complete system has been simulated with different wind velocities. The simulation results are presented to illustrate the effectiveness of the proposed MPPT control scheme for a wind energy system. In the simulation results, the d-q axes current controllers and DC-link voltage controller give prominent dynamic response in command tracking and load regulation characteristics.

Aeroelastic tailoring using crenellated skins-modelling and experiment

  • Francois, Guillaume;Cooper, Jonathan E.;Weaver, Paul M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.93-124
    • /
    • 2017
  • Aeroelastic performance controls wing shape in flight and its behaviour under manoeuvre and gust loads. Controlling the wing‟s aeroelastic performance can therefore offer weight and fuel savings. In this paper, the rib orientation and the crenellated skin concept are used to control wing deformation under aerodynamic load. The impact of varying the rib/crenellation orientation, the crenellation width and thickness on the tip twist, tip displacement, natural frequencies, flutter speed and gust response are investigated. Various wind-off and wind-on loads are considered through Finite Element modelling and experiments, using wings manufactured through polyamide laser sintering. It is shown that it is possible to influence the aeroelastic behaviour using the rib and crenellation orientation, e.g., flutter speed increased by up to 14.2% and gust loads alleviated by up to 6.4%. A reasonable comparison between numerical and experimental results was found.

Novel DC Grid Connection Topology and Control Strategy for DFIG-based Wind Power Generation System

  • Yi, Xilu;Nian, Heng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.466-472
    • /
    • 2013
  • The paper presents a novel DC grid connection topology and control strategy for doubly-fed induction generator (DFIG) based wind power generation system. In order to achieve the wind power conversion, the stator side converter and the rotor side converter is used to implement the DFIG control based on the indirect air-gap flux orientation, and a DC/DC converter is used for the DFIG system to DC grid connection. The maximum power point tracking and DC voltage droop control can also be implemented for the proposed DFIG system. Finally, a 4-terminal DFIG-based multi-terminal DC grid system is developed by Matlab to validate the availability of the proposed system and control strategy.

Response of fiber reinforced plastic chimneys to wind loads

  • Awad, A.S.;El Damatty, A.A.;Vickery, B.J.
    • Wind and Structures
    • /
    • v.3 no.2
    • /
    • pp.83-96
    • /
    • 2000
  • Due to their high corrosion and chemical resistance, fiber reinforced plastics (FRP) are becoming widely used as the main structural material for industrial chimneys. However, no national code currently exists for the design of such type of chimneys. The purpose of this study is to investigate analytically the response of FRP chimneys to wind loads. The classical lamination theory is used to substitute the angle-ply laminate of a FRP chimney with an equivalent orthotropic material that provides the same stiffness. Dynamic wind loads are applied to the equivalent chimney to evaluate its response to both along and across wind loads. A parametric study is then conducted to identify the material and geometric parameters affecting the response of FRP chimneys to wind loads. Unlike the across-wind response, the along-wind tip deflection is found to be highly dependent on the angle of orientation of the fibers. In general, the analysis shows that FRP chimneys are very vulnerable to across-wind oscillations resulting from the vortex shedding phenomenon.

Systematic influence of wind incident directions on wind circulation in the re-entrant corners of high-rise buildings

  • Qureshi, M. Zahid Iqbal;Chan, A.L.S.
    • Wind and Structures
    • /
    • v.22 no.4
    • /
    • pp.409-428
    • /
    • 2016
  • The mechanical and aerodynamic effect of building shape plays a dominate role in the pedestrian level wind environment. These effects have been presented in numerous studies and are available in many wind codes. However, most studies have focused on wind flow around conventional buildings and are limited to few wind directions. The present study investigated wind circulation in the re-entrant corners of cross-shaped high-rise buildings from various wind directions. The investigation focused on the pedestrian level wind environment in the re-entrant corners with different aspect ratios of building arrangements. Ninety cases of case study arrangements were evaluated using wind tunnel experimentation. The results show that for adequate wind circulation in the re-entrant corners, building orientations and separations play a critical role. Furthermore, in normal wind incident directions and at a high aspect ratio, poor wind flow was observed in the re-entrant corners. Moreover, it was noted that an optimized building orientation and aspect ratio significantly improved the wind flow in re-entrant corners and through passages. In addition, it was observed that oblique wind incident direction increased wind circulation in the re-entrant corners and through passages.

Development of Flapping Type Wind Turbine System for 5 kW Class Hybrid Power Generation System

  • Lee, Haseung;Kong, Changduk;Park, Hyunbum
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2016
  • Even though the differential drag type machines of the vertical wind turbines are a bit less efficient than the lift type machines such as Darrieus type machines, they have an advantage of low starting torque. The flapping blade type wind turbine is a specific type of the differential drag machines, and it has no need for orientation as well as quite low starting torque. This work is to develop an innovative 5kW class flapping type vertical wind turbine system which will be applicable to a hybrid power generation system driven by the diesel engine and the wind turbine. The parametric study was carried out to decide an optimum aerodynamic configuration of the wind turbine blade. In order to evaluate the designed blade, the subscale wind tunnel test and the performance test were carried out, and their test results were compared with the analysis results.

Aeolian Noise from High Voltage Insulators (초고압 송전용 애자의 풍소음 특성)

  • Chu, Jang-Hee;Kim, Sang-Beom;Shin, Koo-Yong;Lee, Seong-Doo;Lee, Dong-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1842-1847
    • /
    • 2000
  • In this paper, a review is attempted for understanding of aeolian noise from high voltage insulators and their aerodynamic noise characteristics were investigated using the low noise wind tunnel. The noise from the insulators was dependent upon the wind speed and their orientation relative to the wind direction. The noise spectrum revealed sharp peak which was found the cavity resonance frequency.

  • PDF

Interference Effects of Change in Wind Passage of a Building Group on Wind Loads and Wind Environments (건축물군의 바람길변화로 인한 풍하중 상호간섭 및 풍환경)

  • Cho, Kang-Pyo;Hong, Sung-Il;Kim, Mu-Hwan;Lee, Ok-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.402-409
    • /
    • 2008
  • Wind loads and environments in realistic situations surrounded by neighboring buildings may be considerably different from those in idealized or simplified situations such as codes and standards. Interference effects of change in wind passage of a building group on wind loads and wind environments are reviewed. Wind-induced interference effects depend mainly on the building geometry and arrangement of these structures, their orientation and upstream terrain conditions. The most important factor among them may be the arrangement of building structures which can change the wind direction directly. Interference effects regarding wind loads are discussed with examples of window damages by typhoon and of pressure measurements in the boundary layer wind tunnel. Wind environment problems are also discussed, specially underlined on pedestrian comfort and safety. Various evaluation techniques or standards of wind environment are introduced. The change of wind velocity between the panel-type apartment buildings is examined, depending on the distance each other.

  • PDF

Layout optimization for multi-platform offshore wind farm composed of spar-type floating wind turbines

  • Choi, E.H.;Cho, J.R.;Lim, O.K.
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.751-761
    • /
    • 2015
  • A multi-platform offshore wind farm is receiving the worldwide attention for the sake of maximizing the wind power capacity and the dynamic stability at sea. But, its wind power efficiency is inherently affected by the interference of wake disturbed by the rotating blades, so its layout should be appropriately designed to minimize such wake interference. In this context, the purpose of this paper is to introduce a layout optimization for multi-platform offshore wind farm consisted of 2.5MW spar-type floating wind turbines. The layout is characterized by the arrangement type of wind turbines, the spacing between wind turbines and the orientation of wind farm to the wind direction, but the current study is concerned with the spacing for a square-type wind farm oriented with the specific angle. The design variable and the objective function are defined by the platform length and the total material volume of the wind farm. The maximum torque loss and overlapping section area are taken as the constraints, and their meta-models expressed in terms of the design variable are approximated using the existing experimental data and the geometry interpretation of wake flow.