• 제목/요약/키워드: Wind Load

Search Result 1,473, Processing Time 0.028 seconds

Development of the Transmission Line Design System for Overseas Projects (해외사업용 송전선로 설계시스템 개발)

  • Min, Byeong-Wook;Kim, Jong-Hwa;Choi, Seok-June;Bang, Hang-Kwon;Choi, Han-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.129-131
    • /
    • 2006
  • KEPCO constructed the first 765kV 2 circuit transmission line in the world with its home grown technologies. Through this 765kV transmission system project, KEPCO accumulated experience and technologies related to the 765 kV power system. Based on the successful completion of the 765kV transmission project, KEPCO is conducting overseas business by using its abundant experience and know-how. In particular, KEPCO developed the training course for power system, called the ATT (Advanced Transmission Technology) training courses for overseas business, especially for developing countries. Therefore, KEPCO developed the "Transmission line design system for overseas projects". This system supports the calculation of wind pressure load, tower design, wire selection, insulation design, etc. by applying the meteorological data of foreign countries and design standards. And this system is applied to the training program so that the trainees can design the optimal transmission line for their own countries.

  • PDF

An Effective Adaptive Autopilot for Ships

  • Le, Minh-Duc;Nguyen, Si-Hiep;Nguyen, Lan-Anh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.720-723
    • /
    • 2005
  • Ship motion is a complex controlled process with several hydrodynamic parameters that vary in wide ranges with respect to ship load condition, speed and surrounding conditions (such as wind, current, tide, etc.). Therefore, to effectively control ships in a designed track is always an important task for ship masters. This paper presents an effective adaptive autopilot ships that ensure the optimal accuracy, economy and stability characteristics. The PID control methodology is modified and parameters of a PID controller is designed to satisfy conditions for an optimal objective function that comprised by heading error, resistance and drift during changing course, and loss of surge velocity or fuel consumption. Designing of the controller for course changing process is based on the Model Reference Adaptive System (MRAS) control theory, while as designing of the automatic course keeping process is based on the Self Tuning Regulator (STR) control theory. Simulation (using MATLAB software) in various disturbance conditions shows that in comparison with conventional PID autopilots, the designed autopilot has several notable advantages: higher course turning speed, lower swing of ship bow even in strong waves and winds, high accuracy of course keeping, shorter time of rudder actions smaller times of changing rudder direction.

  • PDF

Design and Simulation of Integral Twist Control for Helicopter Vibration Reduction

  • Shin, Sang-Joon;Cesnik Carlos E. S.;Hall Steven R.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.24-34
    • /
    • 2007
  • Closed-loop active twist control of integral helicopter rotor blades is investigated in this paper for reducing hub vibration induced in forward flight. A four-bladed fully articulated integral twist-actuated rotor system has been designed and tested successfully in wind tunnel in open-loop actuation. The integral twist deformation of the blades is generated using active fiber composite actuators embedded in the composite blade construction. An analytical framework is developed to examine integrally twisted helicopter blades and their aeroelastic behavior during different flight conditions. This aeroelastic model stems from a three-dimensional electroelastic beam formulation with geometrical-exactness, and is coupled with finite-state dynamic inflow aerodynamics. A system identification methodology that assumes a linear periodic system is adopted to estimate the harmonic transfer function of the rotor system. A vibration minimizing controller is designed based on this result, which implements a classical disturbance rejection algorithm with some modifications. Using the established analytical framework, the closed-loop controller is numerically simulated and the hub vibratory load reduction capability is demonstrated.

Pushover Analysis of Reinforced Concrete Shear Wall Subjected to High Axial Load Using Fiber Slices and Inelastic Shear Spring (섬유(Fiber)요소와 비선형 전단스프링을 적용한 고축력을 받는 철근콘크리트 전단벽의 비선형거동 분석)

  • Jun, Dae Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.239-246
    • /
    • 2015
  • Reinforced concrete shear walls are effective for resisting lateral loads imposed by wind or earthquakes. Observed damages of the shear wall in recent earthquakes in Chile(2010) and New Zealand(2011) exceeded expectations. Various analytical models have been proposed in order to incorporate such response features in predicting the inelastic response of RC shear walls. However, the model has not been implemented into widely available computer programs, and has not been sufficiently calibrated with and validated against extensive experimental data at both local and global response levels. In this study, reinforced concrete shear walls were modeled with fiber slices, where cross section and reinforcement details of shear walls can be arranged freely. Nonlinear analysis was performed by adding nonlinear shear spring elements that can represent shear deformation. This analysis result will be compared with the existing experiment results. To investigate the nonlinear behavior of reinforced concrete shear walls, reinforced concrete single shear walls with rectangular wall cross section were selected. The analysis results showed that the yield strength of the shear wall was approximately the same value as the experimental results. However, the yielding displacement of the shear wall was still higher in the experiment than the analysis. The analytical model used in this study is available for the analysis of shear wall subjected to high axial forces.

A Study on the Simulation of Natural Ventilation Effect for Single-sided Casement Window as Opening Types (케이스먼트 창호 개폐방식에 따른 자연환기 효과에 관한 시뮬레이션 연구)

  • Choi, Taehwoan;Kim, Taeyeon;Leigh, Seung-Bok
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.57-62
    • /
    • 2007
  • At the moment, the reduction of building energy consumption is a unavoidable task of mankind for conserving global environment. Decreasing overall U-value of building envelope and air infiltration, especially in Korean climate condition with clear four seasons, are the obvious solutions for the objective. Thus low glazing ratio with small window openings are required for heating and cooling load reduction in buildings. Using larger window openings could provide better natural ventilation but it also increases the direct solar radiation penetration into indoor space, heat gain in summer and heat loss in winter. On the other hand, the ventilation rates decreasing problem with smaller window openings could be occurred. As a solution for it, the use of casement window can cause increasing natural ventilation rates by wing wall effect. This paper focuses on deduce the most efficient opening type of casement window in Korean climate. To estimate ventilation performance of each opening types, CFD simulation was used. The best performance of opening type in every wind direction is opening both windows to the center and the most appropriate opening type for Korean climate is also opening both windows to center.

Analysis Method for Cable-Membrane Structures with Element Slipping (외력에 의해 요소이동이 발생되는 케이블-막 구조물의 해석 방법)

  • Kang, Joo-Won;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.79-90
    • /
    • 2005
  • The purpose of this study is development of a finite element algorithm to find out the stressed condition, slipped direction and slipped dimension when some elements of cable-membrane structures are slipped from it's initially designed coordinates by external loads as wind or non uniform load and so on. In order to search the slipped behaviors of cable-membrane structures, a Arbitrarily-Lagrangian-Eulerian(ALE) finite element formulation is introduced. In these procedures, a stiffness matrix related with ALE concept is formulated and a FE analysis program for cable-membrane structures with slipped elements is developed. Various examples for cable and membrane structures are presented to verify the program's validation. The results are shown good agreement with that of existed one.

  • PDF

Operation of Battery Energy Storage System for Governor Free and its Effect (주파수추종 운전 적용을 위한 BESS의 운용 방법 및 효과)

  • Cho, Sung-Min;Jang, Byung-Hoon;Yoon, Yong-Bum;Jeon, Woong-Jae;Kim, Chulwoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.16-22
    • /
    • 2015
  • As the development of Battery Energy Storage System(BESS) and the increasing of intermittent energy sources like wind power and photovoltaic, the application of BESS in load frequency control is considered as an effective method. To evaluate the effectiveness of BESS application in frequency control, we defined a governor free model of BESS to conduct dynamic simulation. Using the BESS dynamic model, we implemented the power system dynamic model including steam, gas and hydro turbine generators. In this paper we study the control performance of BESS in primary frequency control. The effect of BESS speed regulation rate and response time on governor free operation is investigated. In addition, we compared BESS from steam turbine generator in view point of frequency regulation.

Changes of Mooring Force due to Structural Modification of a Barge Ship (바지선 구조변경이 계류력 변화와 안정성에 미치는 영향)

  • Park, Jung-Hong;Kim, Kwang-Hoon;Moon, Byung-Young;Jang, Tak-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.48-54
    • /
    • 2011
  • Structural modifications of a ship may cause a fatal accident such as sinking and wrecking of ship. Especially, barge ship can be easily reconstructed to load more bulk cargo. In this study, for a real accident case, change of mooring force due to structural modification was analyzed to evaluate accident risk. A two dimensional dynamic model for the barge ship was constructed to compute mooring forces with related to floating motion. The equation of motion was established in Matlab code and buoyancy was calculated by using direct integration of submerged volume. The results showed that wind force, current force, and mooring force after rebuilding was approximately 4.3 kN, 14 kN, 1,561 kN respectively. The maximum force of mooring force according to the length of mooring cable were 1,614 kN at 30 m of mooring cable. Thus, an arbitrary modification of ship lead instability and unreliable result so that illegal rebuilding of ship should be avoided.

Development of Real-time Condition Monitoring System for Container Cranes (컨테이너 크레인 실시간 설비진단 시스템 개발)

  • Jung, D.U.;Choo, Y.Y.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.18-23
    • /
    • 2008
  • This paper describes development of real-time condition monitoring system to observe state of a container crane in a port. To analyze the state of a crane, the strength and the direction of wind are measured with sensors along with the load resulted a crane at the moment. The measured signals are processed by especially developed conditioning board and converted into digital data. Measured data are analyzed to define the state of the crane at an indicator. For transmission of these data to the indicator, we implemented wireless sensor network based on IEEE 802.15.4 MAC(Media Access Control) protocol and Bluetooth network protocol. To extend the networking distance between the indicator and sensor nodes, the shortest path routing algorithm was applied for WSN(Wireless Sensor Network) networks. The indicator sends the state information of the crane to monitoring server through IEEE 802.11 b wireless LAN(Local Area Network). Monitoring server decides whether alarm should be issued or not. The performance of developed WSN and Bluetooth network were evaluated and analyzed in terms of communication delay and throughput.

  • PDF

A Study on Thermal Comfortable Following the Thermal Environment Migration in Detached Housing Area (열환경 완화를 통한 주택지내 쾌적성 확보에 관한 연구)

  • Ryu, Ji-Won;Jung, Eung-Ho;Hoyano, Akira;Kim, Dae-Wuk
    • Journal of the Korean housing association
    • /
    • v.24 no.1
    • /
    • pp.51-59
    • /
    • 2013
  • This study aims to improve the thermal comfort level of detached housing area by reducing the impact of thermal environment. The study focused on reducing surface temperature that is generated in buildings and adjacent spaces as a result of sensible heat load and presented a proposal on implementing planting method considering its outdoor condition and structure and composed materials. To perform the study, we utilized 3D-CAD to examine the outdoor condition and structure and composed materials that impact on surface temperature and conducted space design after reflecting climatic elements in simulations. The result is as follows. In reviewing temperature distribution of Heat Island Potential (HIP) of buildings and adjacent spaces, in case where green coverage ratio is increased, there was a $6^{\circ}C$ temperature difference and in regard to changes in the thermal environment in detached housing area, in case where rooftop planting, surface improvement, planting, and overall green coverage ratio is increased, there was a $10^{\circ}C$ temperature difference. In addition, there was difference in temperature in detached housing area following the changes in wind.