• 제목/요약/키워드: Wind Induction Generator

검색결과 225건 처리시간 0.033초

모델 기반의 풍력발전용 유도발전기의 최소 손실 제어 (Model-Based Loss Minimization Control for Induction Generators - in Wind Power Generation Systems)

  • 아보칼릴 아메드;이동춘
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권7호
    • /
    • pp.380-388
    • /
    • 2006
  • In this paper, a novel control algorithm to minimize the power loss of the induction generator for wind power generation system is presented. The proposed method is based on the flux level reduction, where the flux level is computed from the machine model for the optimum d-axis current of the generator. For the vector-controlled induction generator, the d-axis current controls the excitation level in order to minimize the generator loss while the q-axis current controls the generator torque, by which the speed of the induction generator is controlled according to the variation of the wind speed in order to produce the maximum output power. Wind turbine simulator has been implemented in laboratory to validate the theoretical development. The experimental results show that the loss minimization process is more effective at low wind speed and that the percent of power loss saving can approach to 25%. Experimental results are shown to verify the validity of the proposed scheme.

농형 유도발전기와 권선형 유도발전기의 특성비교 (Comparison of Squirrel cage and Wound induction generator characteristics in Wind Power System)

  • 김찬기;이원교;임철규
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.469-471
    • /
    • 2005
  • Wind farms employs induction generators which are two type, one is Squirrel cage for fixed speed wind turbines and the other is Wound induction generator (doubly fed induction generator DFIG) for variable speed wind turbines. this paper describes grid connection scheme of wind power system using two type induction generators and simulation results show the characteristics of two type induction generators.

  • PDF

인버터 부착형 농형 유도발전기의 계통고장특성 모의 (Grid faults characteristics simulation of inverter-fed induction generator)

  • 홍지태;권순만;김춘경;이종무;천종민;김홍주;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.43.1-43.1
    • /
    • 2011
  • The detail simulation modeling of fully-fed induction generator is investigated through PC based MATLAB/Simulink environment. Generator's stator currents are controlled by indirect vector control method. In this method, generator side converter controls the maximum excitation (air gap flux) by stator d-axis current and controls generator torque by stator q-axis current. Induction generator speed is controlled by tip speed ratio (TSR) upon the wind speed variations in order to generate the maximum output power. The generator torque model is specified as a 3-blade wind turbine with rating, then, the model is simulated under normal operating condition and three different fault conditions. The matlab model designed for fully-fed induction generator based wind farm provides good performance under normal and grid fault conditions. It provides good results for different pwm techniques and fault conditions except the single-phase line to ground fault, which should be verified with real time data from wind farms.

  • PDF

풍력발전용 계통연계 DFIG의 출력 해석 (Power Analysis of Grid Connected Doubly Fed Induction Generator for Wind Power Generating System)

  • 이현채;서영택;오철수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.326-329
    • /
    • 1997
  • This paper deals with the generating power analysis of wound rotor induction generator according to the rotor excitation for use of DFIG (Doubly Fed Induction Generator) system in wind power generation as a part of renewable energy development. In this way, the generating power of wound rotor induction generator can be achieved for a wide range wind speed of supersynchronous and subsynchronous speed.

  • PDF

Performance of Double Fed Induction Machine at Sub- and Super-Synchronous Speed in Wind Energy Conversion System

  • Eskander, Mona N.;Saleh, Mahmoud A.;El-Hagry, Mohsen M.T.
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.575-581
    • /
    • 2009
  • In this paper two modes of operating a wound rotor induction machine as a generator at sub-and super-synchronous speeds in wind energy conversion systems are investigated. In the first mode, known as double fed induction generator (DFIG), the rotor circuit is fed from the ac mains via a controlled rectifier and a forced commutated inverter. Adjusting the applied rotor voltage magnitude and phase leads to machine operation as a generator at sub-synchronous speeds. In the second mode, the machine is operated in a slip recovery scheme where the slip energy is fed back to the ac mains via a rectifier and line commutated inverter. This mode is described as double output induction generator (DOIG) leading to increase the efficiency of the wind-to electrical energy conversion system. Simulated results of both modes are presented. Experimental verification of the simulated results are presented for the DOIG mode of operation, showing larger amount of power captured and better power factor when compared to conventional induction generators.

Optimal Efficiency Control of Induction Generators in Wind Energy Conversion Systems using Support Vector Regression

  • Lee, Dong-Choon;Abo-Khalil, Ahmed. G.
    • Journal of Power Electronics
    • /
    • 제8권4호
    • /
    • pp.345-353
    • /
    • 2008
  • In this paper, a novel loss minimization of an induction generator in wind energy generation systems is presented. The proposed algorithm is based on the flux level reduction, for which the generator d-axis current reference is estimated using support vector regression (SVR). Wind speed is employed as an input of the SVR and the samples of the generator d-axis current reference are used as output to train the SVR algorithm off-line. Data samples for wind speed and d-axis current are collected for the training process, which plots a relation of input and output. The predicted off-line function and the instantaneous wind speed are then used to determine the d-axis current reference. It is shown that the effect of loss minimization is more significant at low wind speed and the loss reduction is about to 40% at 4[m/s] wind speed. The validity of the proposed scheme has been verified by experimental results.

PSCAD/EMTDC를 이용한 계통 연계 풍력 유도 발전기의 운전 특성에 관한 연구 (A Study on Operational Characteristics of Wind Turbine Induction Generators Interconnected with Distribution Networks Using PSCAD/EMTDC)

  • 장성일;정종찬;김광호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권12호
    • /
    • pp.704-713
    • /
    • 2002
  • This paper describes operational characteristics of wind turbine induction generators interconnected with distribution networks using PSCAD/EMTDC. Due to the simple and durable structure, induction generators are the most common type used in wind Power generation. Generally, induction generators are classified into two groups according to the shape of rotor, one is squirrel-cage type and the other is wound-rotor type. In this study, we simulate the start-up and the output variation of generators interconnected with distribution networks and compare the operational characteristics of squirrel -cage type and wound-rotor type induction generators located in the unfaulted distribution lines about the disturbance occurred on the associated distribution feeders emanated from the substation to which wind turbine generator is connected. In order to obtain the realistic results, we use the radial distribution network of IEEE 13-bus model.

풍력발전시스템이 연계된 계통의 과도상태해석 (Transient State Analysis of Network Connected to Wind Generation System)

  • 김세호
    • 한국태양에너지학회 논문집
    • /
    • 제23권3호
    • /
    • pp.29-35
    • /
    • 2003
  • Generator for wind power can be either synchronous or asynchronous (induction) types. Induction and synchronous generators behave in a different way when subjected to severe faults. Induction generators does not have an angle stability limit and short circuit in the neighborhood of an Induction generator causes the demagnetization of the machine when the fault is cleared, the voltage raises slowly, while the grid contributes with reactive power to the generator and the magnetic flux recovers. On the other hand in the synchronous generators the recovery of the voltage is immediate, since the excitation of the rotor angle comes from an independent circuit. This paper shows the result of the transient state analysis in the network connected to wind generation system Several case studies have been conducted to determine the effect of the clearing time of a fault on the network stability. It has been found that the critical clearing time can be as low as 61ms in the case of induction generator compared to 370ms in the case of synchronous generator.

Simulink에서 계통연계 풍력발전시스템의 전압변동 시뮬레이션 (Simulation for Voltage Variations of a Grid-connected Wind Turbine Generation System by Simulink)

  • 안덕근;노경수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권11호
    • /
    • pp.589-595
    • /
    • 2004
  • This paper presents a modeling and simulation of a grid-connected wind turbine generation system with respect to wind variations, starting of large induction motor and three-phase fault in the system, and investigates voltage variations of the system for disturbances. It describes the modeling of the wind turbine system including the drive train model, induction generator model, and grid-interface model on MATLAB/Simulink. The simulation results show the variation of the generator torque, the generator rotor speed, the pitch angle, terminal voltage, system voltage, fault current, and real/reactive power output, etc. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction for wind speed variations, starting of a large induction motor causes a voltage sag due to a large starting current, and a fault on the system influences on the output of the wind turbine generator.

Transient Simulation of a Self-Excited Induction Generator during Grid Faults

  • Kim, Chan-Ki;Choy, Young-Do;Lim, Seong-Joo
    • Journal of Power Electronics
    • /
    • 제7권2호
    • /
    • pp.89-96
    • /
    • 2007
  • This paper deals with the transient performance of an induction generator in a wind power plant. An induction generator and grid equipment may be damaged when a sudden disturbance occurs, for example, a sudden disconnection from the utility grid. The reasons for this are over-voltage and over speed. This paper analyzes this phenomena using PSCAD/EMTDC and coincides with its corresponding mathematical equation.