• Title/Summary/Keyword: Wind Estimation

Search Result 674, Processing Time 0.026 seconds

Nonlinear structural system wind load input estimation using the extended inverse method

  • Lee, Ming-Hui
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.451-464
    • /
    • 2013
  • This study develops an extended inverse input estimation algorithm with intelligent adaptive fuzzy weighting to effectively estimate the unknown input wind load of nonlinear structural systems. This algorithm combines the extended Kalman filter and recursive least squares estimator with intelligent adaptive fuzzy weighting. This study investigated the unknown input wind load applied on a tower structural system. Nonlinear characteristics will exist in various structural systems. The nonlinear characteristics are particularly more obvious when applying larger input wind load. Numerical simulation cases involving different input wind load types are studied in this paper. The simulation results verify the nonlinear characteristics of the structural system. This algorithm is effective in estimating unknown input wind loads.

Evaluation of full-order method for extreme wind effect estimation considering directionality

  • Luo, Ying;Huang, Guoqing;Han, Yan;Cai, C.S.
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.193-204
    • /
    • 2021
  • The estimation of the extreme wind load (effect) under a mean recurrence interval (MRI) is an important task in the wind-resistant design for the structure. It can be predicted by either first-order method or full-order method, depending on the accuracy and complexity requirement. Although the first-order method with the consideration of wind directionality has been proposed, less work has been done on the full-order method, especially with the wind directionality. In this study, the full-order method considering the wind directionality is proposed based on multivariate joint probability distribution. Meanwhile, considering two wind directions, the difference of the corresponding results based on the first-order method and full-order method is analyzed. Finally, based on the measured wind speed data, the discrepancy between these two methods is investigated. Results show that the difference between two approaches is not obvious under larger MRIs while the underestimation caused by the first-order method can be larger than 15% under smaller MRIs. Overall, the first-order method is sufficient to estimate the extreme wind load (effect).

Rain Rate Estimation Process Using Doppler Spectrum of UHF Wind Profiler Radar

  • Kitichai Visessiri;Chaiwat Somboonlarp;Anuchit Waisontia;Lee, Nipha laruji;Narong Hemmakon
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1575-1577
    • /
    • 2002
  • In this research we propose a method far rain rate estimation by using Doppler spectrum's data of wind profiler. The Doppler spectrum is used to calculate the wind velocity and wind direction. But in this research uses the parameters from Doppler spectrum, it calculates the rain rate. The rain rate estimation in this method will be compared to the obtained rain rate from the surface rain gauge. Two equipments are installed in the same area. The correlation coefficient between rain rate measuring method is 0.65.

  • PDF

New estimation methodology of six complex aerodynamic admittance functions

  • Han, Y.;Chen, Z.Q.;Hua, X.G.
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.293-307
    • /
    • 2010
  • This paper describes a new method for the estimation of six complex aerodynamic admittance functions. The aerodynamic admittance functions relate buffeting forces to the incoming wind turbulent components, of which the estimation accuracy affects the prediction accuracy of the buffeting response of long-span bridges. There should be two aerodynamic admittance functions corresponding to the longitudinal and vertical turbulent components, respectively, for each gust buffeting force. Therefore, there are six aerodynamic admittance functions in all for the three buffeting forces. Sears function is a complex theoretical expression for the aerodynamic admittance function for a thin airfoil. Similarly, the aerodynamic admittance functions for a bridge deck should also be complex functions. This paper presents a separated frequency-by-frequency method for estimating the six complex aerodynamic admittance functions. A new experimental methodology using an active turbulence generator is developed to measure simultaneously all the six complex aerodynamic admittance functions. Wind tunnel tests of a thin plate model and a streamlined bridge section model are conducted in turbulent flow. The six complex aerodynamic admittance functions, determined by the developed methodology are compared with the Sears functions and Davenport's formula.

Estimation of Topographic Factor of Wind Speed Using Geographic Information (지리정보를 이용한 풍속지형계수 산정)

  • Seong, Min-Ho;Park, Kyung-Sik;Choi, Se-Hyu
    • Spatial Information Research
    • /
    • v.18 no.3
    • /
    • pp.13-22
    • /
    • 2010
  • Due to the frequent gales and typhoons by anomaly climates and its subsequent loss of life and property, the importance of the research estimating wind load is being emphasized when structure is designed. It is necessary to measure geographical information exactly to estimate topographic factor of wind speed because the increase of topographic factor of wind speed means the increase of wind velocity and the increase of wind velocity has an influence on wind load proportionate to a square. Therefore, the accurate and reasonable estimation method of topographic factor of wind speed is presented in this study using ArchiCAD, an architectural BIM(Building Information Modeling) software. When the structure subjected to wind load is designed, reasonability and economic performance of design will be more improved by using the proposed method.

Wind load estimation of super-tall buildings based on response data

  • Zhi, Lun-hai;Chen, Bo;Fang, Ming-xin
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.625-648
    • /
    • 2015
  • Modern super-tall buildings are more sensitive to strong winds. The evaluation of wind loads for the design of these buildings is of primary importance. A direct monitoring of wind forces acting on super-tall structures is quite difficult to be realized. Indirect measurements interpreted by inverse techniques are therefore favourable since dynamic response measurements are easier to be carried out. To this end, a Kalman filtering based inverse approach is developed in this study so as to estimate the wind loads on super-tall buildings based on limited structural responses. The optimum solution of Kalman filter gain by solving the Riccati equation is used to update the identification accuracy of external loads. The feasibility of the developed estimation method is investigated through the wind tunnel test of a typical super-tall building by using a Synchronous Multi-Pressure Scanning System. The effects of crucial factors such as the type of wind-induced response, the covariance matrix of noise, errors of structural modal parameters and levels of noise involved in the measurements on the wind load estimations are examined through detailed parametric study. The effects of the number of vibration modes on the identification quality are studied and discussed in detail. The made observations indicate that the proposed inverse approach is an effective tool for predicting the wind loads on super-tall buildings.

Numerical wind load estimation of offshore floating structures through sustainable maritime atmospheric boundary layer

  • Yeon, Seong Mo;Kim, Joo-Sung;Kim, Hyun Joe
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.819-831
    • /
    • 2020
  • Wind load is one of the major design loads for the hull and mooring of offshore floating structures, especially due to much larger windage area above water than under water. By virtue of extreme design philosophy, fully turbulent flow assumption can be justified and the hydrodynamic characteristics of the flow remain almost constant which implies the wind load is less sensitive to the Reynolds number around the design wind speed than wind profile. In the perspective of meteorology, wind profile used for wind load estimation is a part of Atmospheric Boundary Layer (ABL), especially maritime ABL (MBL) and have been studied how to implement the profile without losing turbulence properties numerically by several researchers. In this study, the MBL is implemented using an open source CFD toolkit, OpenFOAM and extended to unstable ABL as well as neutral ABL referred to as NPD profile. The homogeneity of the wind profile along wind direction is examined, especially with NPD profile. The NPD profile was applied to a semi-submersible rig and estimated wind load was compared with the results from wind tunnel test.

Analytical and experimental fatigue analysis of wind turbine tower connection bolts

  • Ajaei, Behrouz Badrkhani;Soyoz, Serdar
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • This paper presents a method of estimation of fatigue demands on connection bolts of tubular steel wind turbine towers. The presented method relies on numerical simulation of aerodynamic loads and structural behavior of bolted connections modeled using finite element method. Variability of wind parameters is represented by a set of values derived from their probability densities, which are adjusted based on field measurements. Numerically generated stress time-series show agreement with the measurements from strain gauges inside bolts, in terms of power spectra and the resulting damage. Position of each bolt has a determining effect on its fatigue damage. The proposed framework for fatigue life estimation represents the complexities in loading and local behavior of the structure. On the other hand, the developed procedure is computationally efficient since it requires a limited number of simulations for statistically representing the wind variations.

Real Option Valuation of a Wind Power Project Based on the Volatilities of Electricity Generation, Tariff and Long Term Interest Rate (발전량, 가격, 장기금리 변동성을 기초로 한 풍력발전사업의 실물옵션 가치평가)

  • Kim, Youngkyung;Chang, Byungman
    • New & Renewable Energy
    • /
    • v.10 no.1
    • /
    • pp.41-49
    • /
    • 2014
  • For a proper valuation of wind power project, it is necessary to consider volatilities of key parameters such as annual energy production, electricity sales price, and long term interest rate. Real option methodology allows to calculate option values of these parameters. Volatilities to be considered in wind project valuation are 1) annual energy production (AEP) estimation due to meteorological variation and estimation errors in wind speed distribution, 2) changes in system marginal price (SMP), and 3) interest rate fluctuation of project financing which provides refinancing option to be exercised during a loan tenor for commercial scale projects. Real option valuation turns out to be more than half of the sales value based on a case study for a FIT scheme wind project that was sold to a financial investor.

Evaluation for Fatigue Resistance of Small Wind Turbine Composite Blade according to GL Guideline (GL Guideline에 의거한 소형 풍력발전용 복합재 블레이드의 피로 저항성 평가)

  • Jang, Yun Jung;Kang, Ki Weon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.15-21
    • /
    • 2013
  • This study aims to estimate the fatigue resistance of small wind composite blade using the fatigue life estimation formula in the GL guideline. For this, firstly, we estimated a turbine blade's bending moment spectrum by using wind profile wind profile and BEMT. And fatigue tests were performed to obtain the S-N curve of composite materials used in blade. In addition, a finite element analysis was used to identify fatigue critical locations and fatigue stress spectrum. And the fatigue resistance of composite blade were evaluated using the rainflow cycle counting, and Goodman diagram and the fatigue life estimation formula in the GL guideline.