• Title/Summary/Keyword: Wind Engineering

검색결과 5,616건 처리시간 0.03초

Non-Gaussian wind features over complex terrain under atmospheric turbulent boundary layers: A case study

  • Hongtao, Shen;Weicheng, Hu;Qingshan, Yang;Fucheng, Yang;Kunpeng, Guo;Tong, Zhou;Guowei, Qian;Qinggen, Xu;Ziting, Yuan
    • Wind and Structures
    • /
    • 제35권6호
    • /
    • pp.419-430
    • /
    • 2022
  • In wind-resistant designs, wind velocity is assumed to be a Gaussian process; however, local complex topography may result in strong non-Gaussian wind features. This study investigates the non-Gaussian wind features over complex terrain under atmospheric turbulent boundary layers by the large eddy simulation (LES) model, and the turbulent inlet of LES is generated by the consistent discretizing random flow generation (CDRFG) method. The performance of LES is validated by two different complex terrains in Changsha and Mianyang, China, and the results are compared with wind tunnel tests and onsite measurements, respectively. Furthermore, the non-Gaussian parameters, such as skewness, kurtosis, probability curves, and gust factors, are analyzed in-depth. The results show that the LES method is in good agreement with both mean and turbulent wind fields from wind tunnel tests and onsite measurements. Wind fields in complex terrain mostly exhibit a left-skewed Gaussian process, and it changes from a softening Gaussian process to a hardening Gaussian process as the height increases. A reduction in the gust factors of about 2.0%-15.0% can be found by taking into account the non-Gaussian features, except for a 4.4% increase near the ground in steep terrain. This study can provide a reference for the assessment of extreme wind loads on structures in complex terrain.

Aerodynamic parameters selection and windbreak mechanism of wind barrier for high-speed railway bridge

  • Yujing Wang;Weiwei Guo;He Xia;Qinghai Guan;Shaoqin Wang
    • Wind and Structures
    • /
    • 제38권6호
    • /
    • pp.411-425
    • /
    • 2024
  • To investigate the optimal aerodynamic parameters of wind barriers for the T-beam of high-speed railway (HSR) bridge and the wind field of the wind barrier-train-bridge system, the three-component forces of the system and the wind pressure on the vehicle surface were tested and analyzed through the sectional model wind test. The effects of wind velocity, with/without wind barrier, the height of wind barrier, and the air permeability of the wind barrier on the aerodynamic characteristics of the train-bridge system are discussed. Additionally, a CFD numerical model is constructed to evaluate the wind environment of the bridge surface with/without the wind barrier, and the impact of wind barrier on the running safety of vehicles are analyzed. Comprehensively considering the running safety of the train and the wind-resistant stability of the bridge, it is more appropriate to set the wind barrier height H as 3.5 m and the porosity 𝛽 as 30% respectively.

Potential wind power generation at Khon Kaen, Thailand

  • Supachai, Polnumtiang;Kiatfa, Tangchaichit
    • Wind and Structures
    • /
    • 제35권6호
    • /
    • pp.385-394
    • /
    • 2022
  • The energy demand of the world is increasing rapidly, mainly using fossil energy, which causes environmental damage. The wind is free and clean energy to solve the environmental problems. Thailand is one of the developing nations, and the majority of its energy is obtained from petroleum, natural gas and coal. The objective of this study is to test the characteristics of wind energy at Khon Kaen in Thailand. The wind measurement tools, the 3-cup anemometers to measure wind speed, and wind vanes to measure wind direction, were mounted on a wind tower mast to record wind data at the heights of 60, 90 and 120 meters above ground level (AGL) for 5 years between January 2012 and December 2016. The results show that the annual mean wind speeds were 3.79, 4.32 and 4.66 m/s, respectively. The highest mean wind speeds occurred in June, August and December, in order, and the lowest occurred in September. The majority of prevailing wind directions were from the North-East and South-West directions. The average annual wind shear coefficient was 0.297. Furthermore, five wind turbines with rated power from 0.85 to 4.5 MW were selected to estimate the wind energy output and it was found that the maximum AEP and CF were achieved from the low cut-in speed and high hub-height wind turbines. This important information will help to develop wind energy applications, such as the plan to produce electricity and the calculation of the wind load that affects tall and large structures.

ARIMA Based Wind Speed Modeling for Wind Farm Reliability Analysis and Cost Estimation

  • Rajeevan, A.K.;Shouri, P.V;Nair, Usha
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.869-877
    • /
    • 2016
  • Necessity has compelled man to improve upon the art of tapping wind energy for power generation; an apt reliever of strain exerted on the non-renewable fossil fuel. The power generation in a Wind Farm (WF) depends on site and wind velocity which varies with time and season which in turn determine wind power modeling. It implies, the development of an accurate wind speed model to predict wind power fluctuations at a particular site is significant. In this paper, Box-Jenkins ARIMA (Auto Regressive Integrated Moving Average) time series model for wind speed is developed for a 99MW wind farm in the southern region of India. Because of the uncertainty in wind power developed, the economic viability and reliability of power generation is significant. Life Cycle Costing (LCC) method is used to determine the economic viability of WF generated power. Reliability models of WF are developed with the help of load curve of the utility grid and Capacity Outage Probability Table (COPT). ARIMA wind speed model is used for developing COPT. The values of annual reliability indices and variations of risk index of the WF with system peak load are calculated. Such reliability models of large WF can be used in generation system planning.

Predicting of tall building response to non-stationary winds using multiple wind speed samples

  • Huang, Guoqing;Chen, Xinzhong;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • 제17권2호
    • /
    • pp.227-244
    • /
    • 2013
  • Non-stationary extreme winds such as thunderstorm downbursts are responsible for many structural damages. This research presents a time domain approach for estimating along-wind load effects on tall buildings using multiple wind speed time history samples, which are simulated from evolutionary power spectra density (EPSD) functions of non-stationary wind fluctuations using the method developed by the authors' earlier research. The influence of transient wind loads on various responses including time-varying mean, root-mean-square value and peak factor is also studied. Furthermore, a simplified model is proposed to describe the non-stationary wind fluctuation as a uniformly modulated process with a modulation function following the time-varying mean. Finally, the probabilistic extreme response and peak factor are quantified based on the up-crossing theory of non-stationary process. As compared to the time domain response analysis using limited samples of wind record, usually one sample, the analysis using multiple samples presented in this study will provide more statistical information of responses. The time domain simulation also facilitates consideration of nonlinearities of structural and wind load characteristics over previous frequency domain analysis.

Comparative evaluation of different offshore wind turbine installation vessels for Korean west-south wind farm

  • Ahn, Dang;Shin, Sung-chul;Kim, Soo-young;Kharoufi, Hicham;Kim, Hyun-cheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권1호
    • /
    • pp.45-54
    • /
    • 2017
  • The purpose of this study is to evaluate various means of wind power turbines installation in the Korean west-south wind farm (Test bed 100 MW, Demonstrate site 400 MW). We presented the marine environment of the southwest offshore wind farm in order to decide the appropriate installation vessel to be used in this site. The various vessels would be WTIV (Wind turbine installation vessel), jack-up barge, or floating crane ${\cdots}$ etc. We analyzed the installation cost of offshore wind turbine and the transportation duration for each vessel. The analysis results showed the most suitable installation means for offshore wind turbine in the Korean west-south wind farm.

Wind tunnel study of wind structure at a mountainous bridge location

  • Yan, Lei;Guo, Zhen S.;Zhu, Le D.;Flay, Richard G.J.
    • Wind and Structures
    • /
    • 제23권3호
    • /
    • pp.191-209
    • /
    • 2016
  • Wind tunnel tests of a 1/2200-scale mountainous terrain model have been carried out to investigate local wind characteristics at a bridge location in southeast Tibet, China. Flows at five key locations on the bridge at deck level were measured for 26 directions. It was observed that wind characteristics (including mean wind velocity and overall turbulence intensity) vary significantly depending on the approaching wind direction and measurement position. The wind inclination angle measured in the study fluctuated between $-18^{\circ}$ and $+16^{\circ}$ and the ratio of mean wind velocity to reference wind velocity was small when the wind inclination angles were large, especially for positive wind inclination angles. The design standard wind speed and the minimum critical wind speed for flutter rely on the wind inclination angle and should be determined from the results of such tests. The variation of wind speed with wind inclination angles should be of the asymmetry step type. The turbulence characteristics of the wind were found to be similar to real atmospheric flows.

Analysis of three dimensional equivalent static wind loads of symmetric high-rise buildings based on wind tunnel tests

  • Liang, Shuguo;Zou, Lianghao;Wang, Dahai;Huang, Guoqing
    • Wind and Structures
    • /
    • 제19권5호
    • /
    • pp.565-583
    • /
    • 2014
  • Using synchronous surface pressures from the wind tunnel test, the three dimensional wind load models of high-rise buildings are established. Furthermore, the internal force responses of symmetric high-rise buildings in along-wind, across-wind and torsional directions are evaluated based on mode acceleration method, which expresses the restoring force as the summation of quasi-static force and inertia force components. Accordingly the calculation methods of equivalent static wind loads, in which the contributions of the higher modes can be considered, of symmetric high-rise buildings in along-wind, across-wind and torsional directions are deduced based on internal forces equivalence. Finally the equivalent static wind loads of an actual symmetric high-rise building are obtained by this method, and compared with the along-wind equivalent static wind loads obtained by China National Standard.

Characteristics of wind loading on internal surface and its effect on wind-induced responses of a super-large natural-draught cooling tower

  • Zou, Yun-feng;Fu, Zheng-yi;He, Xu-hui;Jing, Hai-quan;Li, Ling-yao;Niu, Hua-wei;Chen, Zheng-qing
    • Wind and Structures
    • /
    • 제29권4호
    • /
    • pp.235-246
    • /
    • 2019
  • Wind loading is one of important loadings that should be considered in the design of large hyperbolic natural-draught cooling towers. Both external and internal surfaces of cooling tower are under the action of wind loading for cooling circulating water. In the previous studies, the wind loads on the external surface attracted concernedly attention, while the study on the internal surface was relatively ware. In the present study, the wind pressure on the internal surface of a 220 m high cooling tower is measured through wind tunnel testing, and the effect of ventilation rate of the packing layer on internal pressure is a major concern. The characteristics of internal wind pressure distribution and its effect on wind-induced responses calculated by finite element method are investigated. The results indicate that the wind loading on internal surface of the cooling tower behaves remarkable three-dimensional effect, and the pressure coefficient varies along both of height and circumferential directions. The non-uniformity is particularly strong during the construction stage. Analysis results of the effect of internal pressure on wind-induced responses show that the size and distribution characteristics of internal pressure will have some influence on wind-induced response, however, the outer pressure plays a dominant role in the wind-induced response of cooling tower, and the contribution of internal pressure to the response is small.

Computational Methods of Average Wind Speed and Direction

  • Lee, Chee-Cheong;Park, Soo-Hong
    • Journal of information and communication convergence engineering
    • /
    • 제8권1호
    • /
    • pp.29-34
    • /
    • 2010
  • Wind speed and wind direction are usually taken using two parameters: wind speed and wind direction. This paper studies the average wind speed and direction calculation methods. The paper first introduces to basic wind's knowledge, and then presents several methods in calculating average wind speed and direction. Lastly some graphs are plotted base on these computational methods and the implementation of these methods in an actual buoy system.