• Title/Summary/Keyword: Wind Energy Resource

Search Result 253, Processing Time 0.023 seconds

Study of evaluation wind resource detailed area with complex terrain using combined MM5/CALMET system (고해상도 바람지도 구축 시스템에 관한 연구)

  • Lee, Hwa-Woon;Kim, Dong-Hyeuk;Kim, Min-Jung;Lee, Soon-Hwan;Park, Soon-Young;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.274-277
    • /
    • 2008
  • To evaluate high-resolution wind resources for local and coastal area with complex terrain was attemped to combine the prognostic MM5 mesoscale model with CALMET diagnostic modeling this study. Firstly, MM5 was simulated for 1km resolution, nested fine domain, with FDDA using QuikSCAT seawinds data was employed to improve initial meteorological fields. Wind field and other meteorological variables from MM5 with all vertical levels used as initial guess field for CALMET. And 5 surface and 1 radio sonde observation data is performed objective analysis whole domain cells. Initial and boundary condition are given by 3 hourly RDAPS data of KMA in prognostic MM5 simulation. Geophysical data was used high-resolution terrain elevation and land cover(30 seconds) data from USGS with MM5 simulation. On the other hand SRTM 90m resolution and EGIS 30m landuse was adopted for CALMET diagnostic simulation. The simulation was performed on whole year for 2007. Vertical wind field a hour from CALMET and latest results of MM5 simulation was comparison with wind profiler(KEOP-2007 campaign) data at HAENAM site.

  • PDF

Computational Flow Analysis on Wind Profile Change Projected to a Wind Turbine Behind Saemangeum Seawall (새만금 방조제에 의한 풍력터빈 입사풍 변화의 전산유동해석)

  • Woo, Sang-Woo;Kim, Hyun-Goo
    • New & Renewable Energy
    • /
    • v.9 no.1
    • /
    • pp.6-11
    • /
    • 2013
  • Jeollabuk-do has announced a future plan for the Saemangeum Wind Farm which includes the installation of fourteen wind turbines in a single line, located 500m back from the Saemangeum Seawall. It is anticipated as a positive effect that, for sea breeze blowing toward land, the average wind speed could be accelerated and the wind speed distribution could be uniformized by dint of the seawall, an upstream structure of the turbines. At the same time it is also anticipated as a negative effect that the strength of wind turbulence could be increased due to the flow separation generated at the back end of the seawall. According to the results of the computational fluid dynamics analysis of this paper, it has been observed that, at the 50m zone on the road surface located at the uppermost part of the Saemangeum Seawall, the average wind speed has been accelerated by approximately 6~7% and that wind shear has been decreased by 70%, but this positive effect disappears in the zone situated beyond the 100m from the back end of the seawall. It has also been observed that flow separation exists to a limited extent only below the bottom of the blade-sweeping circle and, furthermore, does not extend very far downstream of the wind. As a conclusion, it can be said that the seawall neither positively nor negatively affects the proposed Saemangeum Seawall Wind Farm layout.

Analysis on wind condition characteristics for an offshore structure design (해상풍력 구조물 설계를 위한 풍황 특성분석)

  • Seo, Hyun-Soo;Kyong, Nam-Ho;Vaas, Franz;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.262-267
    • /
    • 2008
  • The long-term wind data are reconstructed from the short-term meteorological data to design the 4 MW offshore wind park which will be constructed at Woljeong-ri, Jeju island, Korea. Using two MCP (Measure-Correlate-Predict) models, the relative deviation of wind speed and direction from two neighboring reference weather stations can be regressed at each azimuth sector. The validation of the present method is checked about linear and matrix MCP models for the sets of measured data, and the characteristic wind turbulence is estimated from the ninety-percent percentile of standard deviation in the probability distribution. Using the Gumbel's model, the extreme wind speed of fifty-year return period is predicted by the reconstructed long-term data. The predicted results of this analysis concerning turbulence intensity and extreme wind speed are used for the calculation of fatigue life and extreme load in the design procedure of wind turbine structures at offshore wind farms.

  • PDF

Wind Speed Prediction in Complex Terrain Using a Commercial CFD Code (상용 CFD 프로그램을 이용한 복잡지형에서의 풍속 예측)

  • Woo, Jae-Kyoon;Kim, Hyeon-Gi;Paek, In-Su;Yoo, Neung-Soo;Nam, Yoon-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.8-22
    • /
    • 2011
  • Investigations on modeling methods of a CFD wind resource prediction program, WindSim for a ccurate predictions of wind speeds were performed with the field measurements. Meteorological Masts having heights of 40m and 50m were installed at two different sites in complex terrain. The wind speeds and direction were monitored from sensors installed on the masts and recorded for one year. Modeling parameters of WindSim input variables for accurate predictions of wind speeds were investigated by performing cross predictions of wind speeds at the masts using the measured data. Four parameters that most affect the wind speed prediction in WindSim including the size of a topographical map, cell sizes in x and y direction, height distribution factors, and the roughness lengths were studied to find out more suitable input parameters for better wind speed predictions. The parameters were then applied to WindSim to predict the wind speed of another location in complex terrain in Korea for validation. The predicted annual wind speeds were compared with the averaged measured data for one year from meteorological masts installed for this study, and the errors were within 6.9%. The results of the proposed practical study are believed to be very useful to give guidelines to wind engineers for more accurate prediction results and time-saving in predicting wind speed of complex terrain that will be used to predict annual energy production of a virtual wind farm in complex terrain.

Accounting for the Atmospheric Stability in Wind Resource Variations and Its Impacts on the Power Generation by Concentric Equivalent Wind Speed (동심원 등가풍속을 이용한 대기안정도에 따른 풍력자원 변화에 관한 연구)

  • Ryu, Geon-Hwa;Kim, Dong-Hyeok;Lee, Hwa-Woon;Park, Soon-Young;Yoo, Jung-Woo;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.49-61
    • /
    • 2016
  • The power production using hub height wind speed tends to be overestimated than actual power production. It is because the hub height wind speed cannot represent vertical wind shear and blade tip loss that aerodynamics characteristic on the wind turbine. The commercial CFD model WindSim is used to compare and analyze each power production. A classification of atmospheric stability is accomplished by Monin-Obukhov length. The concentric wind speed constantly represents low value than horizontal equivalent wind speed or hub height wind speed, and also relevant to power production. The difference between hub height wind speed and concentric equivalent wind speed is higher in nighttime than daytime. Under the strongly convective state, power production is lower than under the stable state, especially using the concentric equivalent wind speed. Using the concentric equivalent wind speed considering vertical wind shear and blade tip loss is well estimated to decide suitable area for constructing wind farm.

Verification of the Validity of WRF Model for Wind Resource Assessment in Wind Farm Pre-feasibility Studies (풍력단지개발 예비타당성 평가를 위한 모델의 WRF 풍황자원 예측 정확도 검증)

  • Her, Sooyoung;Kim, Bum Suk;Huh, Jong Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.735-742
    • /
    • 2015
  • In this paper, we compare and verify the prediction accuracy and feasibility for wind resources on a wind farm using the Weather Research and Forecasting (WRF) model, which is a numerical weather-prediction model. This model is not only able to simulate local weather phenomena, but also does not require automatic weather station (AWS), satellite, or meteorological mast data. To verify the feasibility of WRF to predict the wind resources required from a wind farm pre-feasibility study, we compare and verify measured wind data and the results predicted by WAsP. To do this, we use the Pyeongdae and Udo sites, which are located on the northeastern part of Jeju island. Together with the measured data, we use the results of annual and monthly mean wind speed, the Weibull distribution, the annual energy production (AEP), and a wind rose. The WRF results are shown to have a higher accuracy than the WAsP results. We therefore confirmed that WRF wind resources can be used in wind farm pre-feasibility studies.

Wind and solar energy: a comparison of costs and environmental impacts

  • Carnevale, Ennio A.;Lombardi, Lidia;Zanchi, Laura
    • Advances in Energy Research
    • /
    • v.4 no.2
    • /
    • pp.121-146
    • /
    • 2016
  • This study is concerned with the analysis of two renewable technologies for electric energy production: wind energy and photovoltaic energy. The two technologies were assessed and compared by economic point of view, by using selected indicators characterized by a clear calculation approach, requirement of information easy to be collected, clear, but even complete, interpretation of results. The used economic indicators are Levelized Cost of Energy, $CO_2$ abatement cost and fossil fuel saving specific cost; these last two specifically aimed at evaluating the different capabilities that renewable technologies have to cut down direct $CO_2$ emissions and to avoid fossil fuel extraction. The two technologies were compared also from the environmental point of view by applying Life Cycle Assessment approach and using the environmental impact categories from the Eco-indicator'95 method. The economic analysis was developed by taking into account different energy system sizes and different geographic areas in order to compare different European conditions (Italy, Germany and Denmark) in term of renewable resource availability and market trend. The environmental analysis was developed comparing two particular types of PV and wind plants, respectively residential and micro-wind turbine, located in Italy. According to the three calculated economic indicators, the wind energy emerged as more favorable than PV energy. From the environmental point of view, both the technologies are able to provide savings for almost all the considered environmental impact categories. The proposed approach, based on the use of economic and environmental indicators may be useful in supporting the policies and the decision making procedures concerned with the promotion and use of renewables, in reference to the specific geographic, economic and temporal conditions.

Contemplation of Korean Offshore Wind Industry Development (한국의 해상풍력산업 발전전략 고찰)

  • Kim Jong-hwa
    • Journal of Wind Energy
    • /
    • v.15 no.1
    • /
    • pp.5-10
    • /
    • 2024
  • Offshore wind power generation has significant advantages, including enhanced energy security and job creation. However, despite these benefits, South Korea has not fully utilized its potential in this sector. In contrast, offshore wind power industry development in Europe has been driven by government leadership. Drawing from this experience, South Korea also needs to relax regulations, strengthen necessary infrastructure, and enhance financial support systems to activate the offshore wind power industry. For this, sustained government leadership is absolutely essential. Without addressing the capacity issues in the power grid, we cannot expect offshore wind power generation to succeed. To address grid issues, we propose the enactment of a special law called the "Special Act on Grid Expansion." Considering KEPCO's financial situation, private investment should be encouraged for grid construction. The role of developers is crucial for the successful development and operation of offshore wind power. They manage risks throughout various stages, from site acquisition to construction and operation, which have a significant impact on the success or failure of projects. Since domestic developers currently lack experience in offshore wind power, a cooperative strategy that leverages the experience and technology of advanced countries is necessary. Energy issues should be recognized as important tasks beyond mere political ideologies, as they are crucial for the survival of the nation and its development. It is essential to form a public consensus and implement ways for residents to coexist with offshore wind power, along with the conservation of marine ecosystems and effective communication with stakeholders. Expansion of the offshore wind power industry requires support in various areas, including financial and tax incentives, technology research investment, and workforce development. In particular, achieving carbon neutrality by 2050 necessitates the activation of offshore wind power alongside efforts by major corporations to transition to renewable energy. South Korea, surrounded by the sea, holds significant offshore wind power potential, and it is our responsibility to harness it as a sustainable energy source for future generations. To activate the offshore wind power market, we need to provide financial and tax support, develop infrastructure and research, and foster a skilled workforce. As major corporations transition to renewable energy to achieve carbon neutrality by 2050, offshore wind power must play a significant role. It is our responsibility to fully utilize South Korea's potential and make offshore wind power a new driver of growth.

Investigation on Structural Design and Impact Damage for a Small Wind Turbine Blade (소형 풍력발전기 블레이드의 구조설계 및 충격손상 안전성 연구)

  • Kong, Changduk;Choi, Suhyun;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • Recently the wind energy has been alternatively used as a renewable energy resource instead of the mostly used fossil fuel due to its lack and environmental issues. This work is to propose a structural design and analysis procedure for development of the low noise 100W class small wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. Structural analysis including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the Finite Element Method, the load spectrum analysis and the Miner rule. In order to evaluate the designed structure, the structural test was carried out and its test results were compared with the estimated results. In addition, the blade should be safe from the impact damage due to FOD(Foreign Object Damage) including the bird strike. In order to analize the bird strike penomena on the blade, MSC. Dytran was used, and the applied method Arbitrary Lagrangian-Eulerian was evalud by comparison with the previous study results.

  • PDF

A case study of wind park development and commercial operation (풍력발전단지 조성 및 운영 사레 연구)

  • Byun, Hyo-In;Cho, Joo-Suk;Ryu, Ji-Yoon;Kim, Doo-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.292-295
    • /
    • 2006
  • 2005년 말 현재, 국내의 상업운전 중인 풍력발전기는 93.5MW(KPX 2005)에 불과하여 민간의 풍력에너지 개발 참여를 위한 사업타당성 조사에서 상업운전에 이르는 풍력발전단지 개발절차에 대한 사례 연구가 미비하다. 최근 신재생에너지 보급을 위한 정부의 강력한 의지와 맞물려 민간의 대규모 풍력발전단지 개발 계획이 속속 진행되고 있는 여건에서, 국내 최초의 대단위 상업용 풍력발전단지인 영덕풍력발전의 개발 및 운영사례를 통해 국내 풍력발전단지 개발 시 고려사항과 발생 가능한 문제점 및 해결방안을 제시한다.

  • PDF