• 제목/요약/키워드: Wind Energy

검색결과 2,974건 처리시간 0.034초

100 kW급 풍력발전기의 하중 측정 (Load Measurements of 100 kW Wind Turbine)

  • 배재성;김성완;경남호
    • 한국태양에너지학회 논문집
    • /
    • 제24권4호
    • /
    • pp.27-33
    • /
    • 2004
  • Mechanical load measurements on blade and tower of Vestas 100 kW wind turbine has been reformed in Wollyong test site, Jeju island. The experimental procedure for the measurement of wind turbine loads, such as edgewise(lead-lag) bending moment, flapwise bending moment, and tower base bending moment, has been established. The test facilities consisting of strain-gauges, telemetry and T-Mon system are installed in the wind turbine. Strain gauges are on-site calibrated against load cell prior to monitoring the wind turbine loads. Using the test setup, the loads on the components are being measured and analysed for various external conditions of the wind turbine. A set of results for near rated wind speed has been presented in this paper.

CFD를 이용한 등가풍속 산정과 대기안정도에 따른 연안풍력단지 발전량 변화 연구 (A Study of Energy Production Change according to Atmospheric Stability and Equivalent Wind Speed in the Offshore Wind Farm using CFD Program)

  • 류건화;김동혁;이화운;박순영;김현구
    • 한국환경과학회지
    • /
    • 제25권2호
    • /
    • pp.247-257
    • /
    • 2016
  • To predict annual energy production (AEP) accurately in the wind farm where located in Seongsan, Jeju Island, Equivalent wind speed (EQ) which can consider vertical wind shear well than Hub height wind speed (HB) is calculated. AEP is produced by CFD model WindSim from National wind resource map. EQ shows a tendency to be underestimated about 2.7% (0.21 m/s) than HB. The difference becomes to be large at nighttime when wind shear is large. EQ can be also affected by atmospheric stability so that is classified by wind shear exponent (${\alpha}$). AEP is increased by 11% when atmosphere becomes to be stabilized (${\alpha}$ > 0.2) than it is convective (${\alpha}$ < 0.1). However, it is found that extreme wind shear (${\alpha}$ > 0.3) is hazardous for power generation. This results represent that AEP calculated by EQ can provide improved accuracy to short-term wind power forecast and wind resource assessment.

복잡지형 형상에 따른 풍력자원 보정에 관한 연구 (A study on wind source interpolation based on shape of complex topography)

  • 정의헌;문채주;김의선;장영학
    • 한국태양에너지학회 논문집
    • /
    • 제29권6호
    • /
    • pp.62-68
    • /
    • 2009
  • There has been a continuous increase in the utilization and utility value of renewable energy such as wind power generation in modem society. Wind condition is the absolute variable to the energy volume in the case of a wind power generation system. For this reason, wind power generators have already been installed in areas where wind velocity is high and the possibility of danger is very low. In other words, instability is likely if the wind velocity in an area is high and where a wind power generation system can be built. On the contrary, low wind velocity is possible in an area with high stability. Therefore, the design and manufacture of a wind power generation system should be carried out in a more complicated topography in order to secure a bigger market. This study examines and suggest how topography affects wind shear by analyzing the measured data in order to predict wind power generation more reliably.

대학교 캠퍼스의 풍력자원 측정 및 분석 (Wind Resource Measurements and Analysis at the University Campus)

  • 윤재옥;김명래
    • KIEAE Journal
    • /
    • 제8권1호
    • /
    • pp.19-24
    • /
    • 2008
  • The wind-power among the new and renewable energies uses the wind, a limitless, clean and pure energy which is available at any place. It requires low installation cost compared to the generation of other renewable energies, and is easy to operate, and furthermore, can be automated for operation. Korea has been taking a great deal of interest in the development of renewable energy generating equipment, specifically wind power generation as the nation has a nearly total reliance on imported petroleum. A measuring poll 30m high was installed at a location with an altitude of 142m above the sea level in order to measure and analyze the wind power potentiality at H University's Asan Campus, and the wind velocity and wind direction were measured for 1 year. As for the wind power resource of the area adjacent to Asan campus, the Weibull Distribution coefficient was C=2.68, K =1.29 at H30m. Weibull Distribution coefficient was modified on the basis of compensated wind velocity (=3.1m/s) at H 60m, and the energy density was $42W/m^2$. AEP 223,750 KWh was forecast based on the simulation of an 800KW grade wind turbine. It is considered that the wind power generation has to be studied further in the inland zone with low wind velocity to cope with the possible exhaustion of fossil fuel and ensure a sustainable environmental preservation.

우리나라 지형특성을 고려한 풍력발전 타당성 연구 (Feasibility study of wind power generation considering the topographical characteristics of Korea)

  • 문채주;정의헌;심관식;정권성;장영학
    • 한국태양에너지학회 논문집
    • /
    • 제28권6호
    • /
    • pp.24-32
    • /
    • 2008
  • This paper discussed the Feasibility study of wind power generation considering the topographical characteristics of Korea. In order to estimate the exact generation of wind power plants, we analyzed and compared wind resources in mountain areas and plain areas by introducing not only wind speed, the most important variable, but also wind distribution and wind standard deviation that can reflect the influence of landform sufficiently. According to the results of this study, generation was almost the same at wind power plants installed in southwestern coastal areas where wind speed was low as at those installed in mountain areas in Gangwondo where wind speed was high. This demonstrates that the shape parameter of wind distribution is low due to the characteristics of mountain areas, and the standard deviation of wind speed is large due to the effect of mountain winds, therefore, actual generation compared to southwestern coastal areas is almost similar in mountain areas even though wind speed is high.

A comparison of the performance characteristics of large 2 MW and 3 MW wind turbines on existing onshore wind farms

  • Bilgili, Mehmet;Ekinci, Firat;Demirdelen, Tugce
    • Wind and Structures
    • /
    • 제32권2호
    • /
    • pp.81-87
    • /
    • 2021
  • The aim of the current study is to compare the performance of large 2 MW and 3 MW wind turbines operating on existing onshore wind farms using Blade Element Momentum (BEM) theory and Angular Momentum (AM) theory and illustrate the performance characteristic curves of the turbines as a function of wind speed (U∞). To achieve this, the measurement data obtained from two different Wind Energy Power Plants (WEPPs) located in the Hatay region of Turkey was used. Two different horizontal-axis wind turbines with capacities of 2 MW and 3 MW were selected for evaluation and comparison. The hub-height wind speed (UD), turbine power output (P), atmospheric air temperature (Tatm) and turbine rotational speed (Ω) data were used in the evaluation of the turbine performance characteristics. Curves of turbine power output (P), axial flow induction factor (a), turbine rotational speed (Ω), turbine power coefficient (CP), blade tip speed ratio (λ), thrust force coefficient (CT) and thrust force (T) as a function of U∞ were obtained for the 2 MW and 3 MW wind turbines and these characteristic curves were compared. Results revealed that, for the same wind speed conditions, the higher-capacity wind turbine (3 MW) was operating at higher turbine power coefficient rates, while rotating at lower rotational speed ratios than the lower-capacity wind turbine (2 MW).

통계적 바람장모형에의한 고해상도(1Km×1Km)풍력에너지지도 작성에 관한 연구 (The Establishment of a High Resolution(1Km×1Km) Wind Energy Map Based on a Statistical Wind Field Model)

  • 김혜중;김현식;최영진;변재영
    • 응용통계연구
    • /
    • 제23권6호
    • /
    • pp.1157-1167
    • /
    • 2010
  • 본 논문은 남한지역 풍력자원의 계량화 및 바람환경분석 등에 필요한 풍력에너지지도를 고해상도로 작성하는 방법을 제안하였다. 이를 위해 $1Km{\times}1Km$ 격자로 나누어진 남한전역(345,682 지점)의 월별풍속에 적합한 통계적 바람장모형을 설정하여 각종 풍력에너지통계를 $1Km{\times}1Km$ 격자지점 별로 계산하고, 통계값들를 지도로 구현하는 절차를 연구하였다. 바람장모형의 적합성검정에는 국내 76개 기상관측소에서 관측된 TMY (typical meteorological year) 바람자료가 사용되었으며, Kolmogrov-Smirnov 검정결과 로그정규모형이 남한지역의 월별 바람장모형에 적합하였다. 또한 로그정규모형 하에서 얻어지는 다양한 형태의 풍력에너지통계들을 소개하였으며, 국립기상연구소가 제공하는 $1Km{\times}1Km$ 격자지점(345,682 지점)의 풍속자료를 사용하여 남한(지상 80m)의 풍력에너지밀도(W/$m^2$)지도를 공간분포도 형태로 작성해 보였다.

남한 전력시장에서 풍력발전점유의 전력가격수익 최적화 (Optimizing the Electricity Price Revenue of Wind Power Generation Captures in the South Korean Electricity Market)

  • 에먼 번;김현구;강용혁;윤창열
    • 한국태양에너지학회 논문집
    • /
    • 제36권1호
    • /
    • pp.63-73
    • /
    • 2016
  • How effectively a wind farm captures high market prices can greatly influence a wind farm's viability. This research identifies and creates an understanding of the effects that result in various capture prices (average revenue earned per unit of generation) that can be seen among different wind farms, in the current and future competitive SMP (System Marginal Price) market in South Korea. Through the use of a neural network to simulate changes in SMP caused by increased renewables, based on the Korea Institute of Energy Research's extensive wind resource database for South Korea, the variances in current and future capture prices are modelled and analyzed for both onshore and offshore wind power generation. Simulation results shows a spread in capture price of 5.5% for the year 2035 that depends on both a locations wind characteristics and the generations' correlation with other wind power generation. Wind characteristics include the generations' correlation with SMP price, diurnal profile shape, and capacity factor. The wind revenue cannibalization effect reduces the capture price obtained by wind power generation that is located close to a substantial amount of other wind power generation. In onshore locations wind characteristics can differ significantly/ Hence it is recommended that possible wind development sites have suitable diurnal profiles that effectively capture high SMP prices. Also, as increasing wind power capacity becomes installed in South Korea, it is recommended that wind power generation be located in regions far from the expected wind power generation 'hotspots' in the future. Hence, a suitable site along the east mountain ridges of South Korea is predicted to be extremely effective in attaining high SMP capture prices. Attention to these factors will increase the revenues obtained by wind power generation in a competitive electricity market.

Preliminary hydrodynamic assessments of a new hybrid wind wave energy conversion concept

  • Allan C de Oliveira
    • Ocean Systems Engineering
    • /
    • 제13권1호
    • /
    • pp.21-41
    • /
    • 2023
  • Decarbonization and energy transition can be considered as a main concern even for the oil industry. One of the initiatives to reduce emissions under studies considers the use of renewable energy as a complimentary supply of electric energy of the production platforms. Wind energy has a higher TRL (Technology Readiness Level) than other types of energy converters and has been considered in these studies. However, other types of renewable energy have potential to be used and hybrid concepts considering wind platforms can help to push the technological development of other types of energy converters and improve their efficiency. In this article, a preliminary hydrodynamic assessment of a new concept of hybrid wind and wave energy conversion platform was performed, in order to evaluate the potential of wave power extraction. A multiple OWCs (Oscillating Water Column) WEC (Wave Energy Converter) design was adopted for the analysis and some simplifications were adopted to permit using a frequency domain approach to evaluate the mean wave power estimation for the location. Other strategies were used in the OWC design to create resonance in the sea energy range to try to maximize the potential power to be extracted, with good results.

제주 연안지역 주변의 잠재 풍력에너지 평가 (Assessment of Wind Energy Potential around Jeju Coastal Area)

  • 김남형;진정운
    • 대한토목학회논문집
    • /
    • 제30권6B호
    • /
    • pp.617-625
    • /
    • 2010
  • 풍속의 세제곱에 비례하는 풍력발전기의 전기발전량을 효과적으로 증대시키기 위해서는, 풍속이 강한 부지 선정이 중요하다. 일반적으로 내륙지역보다 풍속이 강한 연안지역에 풍력발전기를 설치하는 것이 바람직하다. 또, 해상풍력개발은 풍력발전기의 중요한 단점 중 하나인 소음 문제를 해결할 수 있는 방법으로 기대된다. 풍력개발 사업을 실행하는 과정에서, 어떤 지역의 풍력발전 가능성을 미리 파악하는 것은 풍력발전의 최적지를 선정하는데 있어서 중요한 요소들 중 하나이다. 본 연구는 기상청이 10년간 관측한 제주도 14개 지역의 풍향 및 풍속데이터를 가지고 제주 연안지역의 풍력발전 가능성에 대해 검토하였다. 풍력발전기의 설치높이를 80 m로 가정하고 풍속데이터를 보정하였으며, 이 값을 가지고 풍력에너지 밀도와 연간 풍력에너지량을 산출하였다. 그리고 모든 관측지점의 연간 전기발전량과 에너지취득률은 3,000 KW 풍력발전기에 관한 정보를 이용하여 산출되었다.