• Title/Summary/Keyword: Wild strain

Search Result 605, Processing Time 0.028 seconds

Lack of O-Polysaccharide Renders Bradyrhizobium japonicum More Resistant to Organic Acid Stress

  • OH , EUN-TAEX;JU, YOUNG-JUN;KOH, SUNG-CHEOL;KIM, YONG-HWI;KIM, JONG-SUL;SO, JAE-SEONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1324-1326
    • /
    • 2004
  • In previous studies, we isolated an isogenic LPS mutant of Bradyrhizobium japonicum 61A101C, which was completely devoid of O-polysaccharide and had altered cell surface characteristics. Subsequently, the mutated gene was identified, cloned, and used to complement the LPS mutant strain JS314 to restore the phenotype. Since it has been reported that in Escherichia coli LPS O-polysaccharide is involved in resistance to an organic acid such as acetic acid under low pH (Barna et al., Molecular Microbiology 43: 629-640, 2002), we compared the organic acid resistance of the three B. japonicum strains; wild-type 61A101C, the LPS mutant JS314, and the complemented strain to determine whether the role of O-polysaccharide in the resistance to organic acid could be generalized. Growth of all three strains was inhibited by the presence of 3 mM acetic acid under acidic condition (pH 5.5). To our surprise, however, in the presence of 2 mM acetic acid, wild-type and the complemented strains did not grow while the $LPS^-$ mutant showed a significant growth. Therefore, unlike in E. coli, the lack of O­polysaccharide of LPS appears to render B. japonicum more resistant to organic acid.

AbSte7, a MAPKK Gene of Alternaria brassicicola, Is Involved in Conidiation, Salt/Oxidative Stress, and Pathogenicity

  • Xu, Houjuan;Zhang, Qianqian;Cui, Wenjuan;Zhang, Xiaofei;Liu, Weiyang;Zhang, Li;Islam, Md. Nurul;Baek, Kwang-Hyun;Wang, Yujun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1311-1319
    • /
    • 2016
  • Alternaria brassicicola (Schwein.) invades Brassicaceae and causes black spot disease, significantly lowering productivity. Mitogen-activated protein kinases (MAPKs) and their upstream kinases, including MAPK kinases (MAPKKs) and MAPKK kinases (MAPKKK), comprise one of the most important signaling pathways determining the pathogenicity of diverse plant pathogens. The AbSte7 gene in the genome of A. brassicicola was predicted to be a homolog of yeast Ste7, a MAPKK; therefore, the function was characterized by generating null mutant strains with a gene replacement method. AbSte7 replacement mutants (RMs) had a slower growth rate and altered colony morphology compared with the wild-type strain. Disruption of the AbSte7 gene resulted in defects in conidiation and melanin accumulation. AbSte7 was also involved in the resistance pathways in salt and oxidative stress, working to negatively regulate salt tolerance and positively regulate oxidative stress. Pathogenicity assays revealed that AbSte7 RMs could not infect intact cabbage leaves, but only formed very small lesions in wounded leaves, whereas typical lesions appeared on both intact and wounded leaves inoculated with the wild-type strain. As the first studied MAPKK in A. brassicicola, these data strongly suggest that the AbSte7 gene is an essential element for the growth, development, and pathogenicity of A. brassicicola.

Production of Glutathione by the Yeast Mutant Saccharomyces cerevisiae Sa59 (효모변이주 Saccharomyces cerevisiae Sa59에 의한 glutathione 생성)

  • Jang, Hye-Yoon;Oh, Chul-Hwan;Oh, Nam-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.801-804
    • /
    • 2013
  • The glutathione contents of the selected mutants were investigated and found to be 6.1-15.8 mg/g-DCW. The glutathione content positively correlated with the antioxidant activity of the mutant strains ($R^2$=0.488). Furthermore, the glutathione content of the mutant S. cerevisiae Sa-59 was approximately 38% greater than that of the wild type strain and, therefore, this mutant strain was selected for glutathione production. The volumetric glutathione content in a shaking culture was increased by about 70% compared to the static culture. In addition, the specific glutathione content was increased by ~19%. The volumetric glutathione content and specific glutathione content were increased by approximately 16% and 66%, respectively, when 0.04% glutamate, 0.04% cysteine and 0.04% glycine were added. Furthermore, the highest antioxidant activity was 0.52 as absorbance unit at 700 nm.

Requirement of Fur for the Full Induction of dps Expression in Salmonella enterica Serovar Typhimurium

  • Yoo, Ah-Young;Kim, Sam-Woong;Yu, Jong-Earn;Kim, Young-Hee;Cha, Jae-Ho;Oh, Jeong-Il;Eo, Seong-Kug;Lee, John-Hwa;Kang, Ho-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1452-1459
    • /
    • 2007
  • The Dps protein, which is overexpressed in harsh environments, is known to playa critical role in the protection of DNA against oxidative stresses. In this study, the roles of Fur in the expression of the dps gene in Salmonella and the protection mechanisms against oxidative stress in Salmonella cells preexposed to iron-stress were investigated. Two putative Fur boxes were predicted within the promoter region of the S. typhimurium dps gene. The profile of dps expression performed by the LacZ reporter assay revealed growth-phase dependency regardless of iron-status under the culture conditions. The fur mutant, $_X4659$, evidenced a reduced level of ${\beta}$-galactosidase as compared to the wild-type strain. The results observed after the measurement of the Dps protein in various Salmonella regulatory mutants were consistent with the results acquired in the reporter assay. This evidence suggested that Fur performs a function as a subsidiary regulator in the expression of dps. The survival ability of Salmonella strains after exposure to oxidative stress demonstrated that the Dps protein performs a pivotal function in the survival of stationary-phase S. typhimurium against oxidative stress. Salmonella cells grown in iron-restricted condition required Dps for full protection against oxidative stress. The CK24 (${\Delta}dps$) cells grown in iron-replete condition survived at a rate similar to that observed in the wild-type strain, thereby suggesting the induction of an unknown protection mechanism(s) other than Dps in this condition.

Functional Anaylsis of sprD Gene Encoding Streptomyces griseus Protease D(SGPD) in Streptomyces griseus

  • Choi Si-Sun;Kim Joung-Hoon;Kim Jong-Hee;Kang Dae-Kyung;Kang Sang-Soon;Hong Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.312-317
    • /
    • 2006
  • The chromosomal sprD gene encoding Streptomyces griseus protease D (SGPD), a chymotrypsin-like protease, was disrupted in Streptomyces griseus by insertion of the neomysin-resistance gene. The production of chymotrypsin activity of sprD disruptant was not completely abolished, but delayed by 24 h, compared with that of wild-type strain. The aerial mycelial formation of sprD disruptant was retarded, and specifically the formation of spores was not observed in the central region of colonies. However, normal morphological development into spores was observed in the marginal region of colonies. In addition, the production of yellow pigment that might be dependent on A-factor was also decreased in the sprD disruptant, compared with that of the wild-type strain. Introduction of the sprD gene, which was placed on a high copy-numbered plasmid into S. griseus ${\Delta}sprD$, partially restored the ability of morphological development, and a significant level of sporulation was observed. When the overexpression vector for sprD, pWHM3-D, was introduced in S. griseus, there was no significant change in the chymotrypsin activity or colonial morphology, in contrast to Streptomyces lividans, indicating the presence of a tight regulation system for the overexpression of the sprD gene in S. griseus.

Lipooligosaccharide biosynthesis genes of nontypable Haemophilus influenzae 2019

  • Lee, Na-Gyong;Melvin G. Sunshine;Jeffery J. Engstrom;Bradford W. Gibson;Michael A. Apicella
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.11a
    • /
    • pp.65-73
    • /
    • 1996
  • LPS/LOS, the compound found only in gram-negative bacterial outer membrane, plays important roles in bacterial maintenance as well as its pathogenesis. We isolated and characterized several genes required for NTHi 2019 LOS biosynthesis, which encode enzymes required for sugar substrate synthesis or the transfer of substrates to receptor molecules. The htrB gene, however, appears to have more complex role. It has acryltransferase activity as well as various other activity, which may control regulation of LOS biosynthesis as well as its pathogenicity. Evidences supporting the latter come from the observations that the lipid A of the B29 induced significantly less TNF ${\alpha}$ from macrophages than that of the wild type LOS (unpublished data). H. influenzae A2-htrB mutant strain was also significantly less invasive than the wild type strain. The structural similarities of the enterobacterial LPS and the Haemophilus LOS enabled us to isolate the NTHi 2019 genes involved in LOS biosynthesis genes by using the S. typhimurium LPS deep core mutants. While a similar approach has been used for E. coli, this technique for selection of an LPS phenotype has not been applied to nonenterobacterial species. The difficulties inherent in the molecular manipulation of organism such as Neisseria and Haemophilus species make this approach particularly attractive in the identification and cloning LOS genes. Studies on genetic features of LPS/LOS biosynthesis would be useful for understanding bacterial pathogenesis as well as for developing vaccines for these gram-negative pathogenic bacteria.

  • PDF

Ordered Differential Display from Cryphonectria parasitica

  • Kang, Hyun-Seok;Choi, Jin-Won;Park, Seung-Moon;Cha, Byeong-Jin;Yang, Moon-Sik;Kim, Dae-Hyuk
    • The Plant Pathology Journal
    • /
    • v.16 no.3
    • /
    • pp.142-146
    • /
    • 2000
  • Ordered differential display using RT-PCR (ODD-PCR) was conducted to have a profile of the differently expressed genes between a hypovirulent strain of Cryphonectria parasitica (UEP1) and its isogenic wild type strain (EP155/2). ODD-PCR has advantages of high sensitivity, reproducibility, proportional representation, and limited number of primer combinations comparing with other differential display methods. RNAs were prepared from 1 and 5 day liquid culture of both hypovirulent and wild type strains, and were further evaluated with the marker genes of C. parasitica such as cryparin and mating factor MF2-1, which were already proven to be specifically down-regulated by the presence of mycovirus CHV1-713. ODD-PCR was conducted using those RNAs and expressed genes were categorized to five groups according to their temporal and quantitative expression patterns. Those fives groups are CPC, CPE, CPL, CPD, and CPU which represent constitutively-expressed, early-expressed, late-expressed, down-regulated, and up-regulated, respectively. Ninety two primer combinations out of a total of 192 have been tested so far. Among the twenty to fifty distinct bands per each reaction, an average of four to ten genes was identified as viral-regulated fungal genes. Those viral-specifc genes were further analyzed by DNA sequencing followed by homology search. Characterization of 30 clones including all five groups were conducted as a preliminary data and more are under investigation.

  • PDF

A Putative Transcription Factor pcs1 Positively Regulates Both Conidiation and Sexual Reproduction in the Cereal Pathogen Fusarium graminearum

  • Jung, Boknam;Park, Jungwook;Son, Hokyoung;Lee, Yin-Won;Seo, Young-Su;Lee, Jungkwan
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.236-244
    • /
    • 2014
  • The plant pathogen Fusarium graminearum causes Fusarium head blight in cereal crops and produces mycotoxins that are harmful to animals and humans. For the initiation and spread of disease, asexual and sexual reproduction is required. Therefore, studies on fungal reproduction contribute to the development of new methods to control and maintain the fungal population. Screening a previously generated transcription factor mutant collection, we identified one putative $C_2H_2$ zincfinger transcription factor, pcs1, which is required for both sexual and asexual reproduction. Deleting pcs1 in F. graminearum resulted in a dramatic reduction in conidial production and a complete loss of sexual reproduction. The pathways and gene ontology of pcs1-dependent genes from microarray experiments showed that several G-protein related pathways, oxidase activity, ribosome biogenesis, and RNA binding and processing were highly enriched, suggesting that pcs1 is involved in several different biological processes. Further, overexpression of pcs1 increased conidial production and resulted in earlier maturation of ascospores compared to the wild-type strain. Additionally, the vegetative growth of the overexpression mutants was decreased in nutrient-rich conditions but was not different from the wild-type strain in nutrient-poor conditions. Overall, we discovered that the pcs1 transcription factor positively regulates both conidiation and sexual reproduction and confers nutrient condition-dependent vegetative growth.

Deletion of the oligopeptide transporter Lmo2193 decreases the virulence of Listeria monocytogenes

  • Li, Honghuan;Qiao, Yanjie;Du, Dongdong;Wang, Jing;Ma, Xun
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.88.1-88.13
    • /
    • 2020
  • Background: Listeria monocytogenes is a gram-positive bacterium that causes listeriosis mainly in immunocompromised hosts. It can also cause foodborne outbreaks and has the ability to adapt to various environments. Peptide uptake in gram-positive bacteria is enabled by oligopeptide permeases (Opp) in a process that depends on ATP hydrolysis by OppD and F. Previously a putative protein Lmo2193 was predicted to be OppD, but little is known about the role of OppD in major processes of L. monocytogenes, such as growth, virulence, and biofilm formation. Objectives: To determine whether the virulence traits of L. monocytogenes are related to OppD. Methods: In this study, Lmo2193 gene deletion and complementation strains of L. monocytogenes were generated and compared with a wild-type strain for the following: adhesiveness, invasion ability, intracellular survival, proliferation, 50% lethal dose (LD50) to mice, and the amount bacteria in the mouse liver, spleen, and brain. Results: The results showed that virulence of the deletion strain was 1.34 and 0.5 orders of magnitude higher than that of the wild-type and complementation strains, respectively. The function of Lmo2193 was predicted and verified as OppD from the ATPase superfamily. Deletion of lmo2193 affected the normal growth of L. monocytogenes, reduced its virulence in cells and mice, and affected its ability to form biofilms. Conclusions: Deletion of the oligopeptide transporter Lmo2193 decreases the virulence of L. monocytogenes. These effects may be related to OppD's function, which provides a new perspective on the regulation of oligopeptide transporters in L. monocytogenes.

Hydrogen Production from Barley Straw and Miscanthus by the Hyperthermophilic Bacterium, Cadicellulosirupter bescii

  • Minseok Cha;Jun-Ha Kim;Hyo-Jin Choi;Soo Bin Nho;Soo-Yeon Kim;Young-Lok Cha;Hyoungwoon Song;Won-Heong Lee;Sun-Ki Kim;Soo-Jung Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1384-1389
    • /
    • 2023
  • This work aimed to evaluate the feasibility of biohydrogen production from Barley Straw and Miscanthus. The primary obstacle in plant biomass decomposition is the recalcitrance of the biomass itself. Plant cell walls consist of cellulose, hemicellulose, and lignin, which make the plant robust to decomposition. However, the hyperthermophilic bacterium, Caldicellulosiruptor bescii, can efficiently utilize lignocellulosic feedstocks (Barley Straw and Miscanthus) for energy production, and C. bescii can now be metabolically engineered or isolated to produce more hydrogen and other biochemicals. In the present study, two strains, C. bescii JWCB001 (wild-type) and JWCB018 (ΔpyrFA Δldh ΔcbeI), were tested for their ability to increase hydrogen production from Barley Straw and Miscanthus. The JWCB018 resulted in a redirection of carbon and electron (carried by NADH) flow from lactate production to acetate and hydrogen production. JWCB018 produced ~54% and 63% more acetate and hydrogen from Barley Straw, respectively than its wild-type counterpart, JWCB001. Also, 25% more hydrogen from Miscanthus was obtained by the JWCB018 strain with 33% more acetate relative to JWCB001. It was supported that the engineered C. bescii, such as the JWCB018, can be a parental strain to get more hydrogen and other biochemicals from various biomass.