• 제목/요약/키워드: Wild species genome

검색결과 54건 처리시간 0.024초

Complete Genome Sequence and Analysis of Carnation Italian Ringspot Virus from Erigeron annuus (L.) Pers. in Korea

  • Chung Youl Park;Da Hyun Lee;Young Ho Jung;JunHyeok Kim;Mi Hyun Lee;Un Seop Shin;Hee Ho Lee;Cho Hee Park;Chae Sun Na
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2020년도 추계국제학술대회
    • /
    • pp.47-47
    • /
    • 2020
  • In this study, we aimed to study carnation italian ringspot virus (CIRV) in Erigeron annuus (L.) Pers. in Bonghwa County, Korea. The collected samples showed mosaic and malformation symptoms. To identify the virus species, we performed high-throughput sequencing, reverse transcription polymerase chain reaction, and cloning. The virus was confirmed to be an unreported species, and therefore we performed genome sequencing of the samples. The complete genome was 4,746 nucleotides in length. The CIRV contained five open reading frames (ORFs), and it showed the typical features of members of the genus Tombusvirus. Phylogenetic analyses revealed that ClRV isolates had the highest nucleotide identities with the CZ isolate (95.89%) from Korea. In recent years, these viruses have sporadically been reported in floral scent and medicinal plants. This research found the first natural host infected with CIRV, and provides baseline information to determine the correlation between weeds and crops.

  • PDF

Development of PCR-based markers for discriminating Solanum berthaultii using its complete chloroplast genome sequence

  • Kim, Soojung;Cho, Kwang-Soo;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • 제45권3호
    • /
    • pp.207-216
    • /
    • 2018
  • Solanum berthaultii is one of the wild diploid Solanum species, which is an excellent resource in potato breeding owing to its resistance to several important pathogens. On the other hand, sexual hybridization between S. berthaultii and S. tuberosum (potato) is limited because of their sexual incompatibility. Therefore, cell fusion can be used to introgress various novel traits from this wild species into the cultivated potatoes. After cell fusion, it is crucial to identify fusion products with the aid of molecular markers. In this study, the chloroplast genome sequence of S. berthaultii obtained by next-generation sequencing technology was described and compared with those of five other Solanum species to develop S. berthaultii specific markers. A total sequence length of the chloroplast genome is 155,533 bp. The structural organization of the chloroplast genome is similar to those of the five other Solanum species. Phylogenic analysis with 25 other Solanaceae species revealed that S. berthaultii is most closely located with S. tuberosum. Additional comparison of the chloroplast genome sequence with those of the five Solanum species revealed 25 SNPs specific to S. berthaultii. Based on these SNPs, six PCR-based markers for differentiating S. berthaultii from other Solanum species were developed. These markers will facilitate the selection of fusion products and accelerate potato breeding using S. berthaultii.

Interspecific Hybrids from Wild $\times$ Cultivated Triticum Crosses - A Study on the Cytological Behaviour and Molecular Relations -

  • Bhagyalakshmi, Kari;Vinod, Kunnummal Kurungara;Kumar, Mahadevan;Arumugachamy, Samudrakani;Prabhakaran, Amala Joseph;Raveendran, Thondikulam Subramanian
    • Journal of Crop Science and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.257-262
    • /
    • 2008
  • Genetic diversity of cultivated wheat is narrowing down and is increasingly becoming non-complacent in tackling new pathogenic races and adverse environmental situations. Wild relatives of wheat are rich repositories of beneficial genes that are capable of defying adverse situations. However, these wild species are not readily crossable with cultivated ones. The present study attempted to cross three wild wheat species as females with three cultivated species of varying ploidy to understand the intricate behaviour of hybrids in relation to cytology, morphology, and molecular recombination. Post-fertilization barriers caused hybrid recovery in wild species in contrast to cultivated species. Triticum monococcum did not produce hybrids in any of the crosses. Various degrees of chromosome anomalies and hybrid sterility were seen with hybrids of T. timopheevi and T. sphaerococcum. Cytoplasmic factors were suspected to add more to the abnormality. G genome from T. timopheevi could enhance more pairing between Band D of cultivated species. Precocity of certain chromosomes in laggard formation was evident, pointing towards evolutionary self balance of the genomes which prevented homeologous pairing. They are eliminated in hybrids. Molecular diversity clearly corroborated with genetic proximity of the species, which distinguished themselves by maintaining the genome homeology.

  • PDF

Cereal Resources in National BioResource Project of Japan

  • Sato, Kazuhiro;Endo, Takashi R.;Kurata, Nori
    • Interdisciplinary Bio Central
    • /
    • 제2권4호
    • /
    • pp.13.1-13.8
    • /
    • 2010
  • The National BioResource Project of Japan is a governmental project to promote domestic/international research activities using biological resources. The project has 27 biological resources including three cereal resources. The core center and sub-center which historically collected the cereal resources were selected for each cereal program. These resources are categorized into several different types in the project; germplasm, genetic stocks, genome resources and database information. Contents of rice resources are wild species, local varieties in East and Southwest Asia & wild relatives, MNU-induced chemical mutant lines, marker tester lines, chromosome substitution lines and other experimental lines. Contents of wheat resources are wild strains, cultivated strains, experimental lines, rye wild and cultivated strains; EST clones and full-length cDNA clones. Contents of barley resources are cultivar and experimental lines, core collection, EST/cDNA clones, BAC clones, their filters and superpool DNA. Each resource is accessible from the online database to see the contents and information about the resources. Links to the genome information and genomic tools are also important function of each database. The major contents and some examples are presented here.

Perspectives provided by leopard and other cat genomes: how diet determined the evolutionary history of carnivores, omnivores, and herbivores

  • Kim, Soonok;Cho, Yun Sung;Bhak, Jong;O'Brian, Stephen J.;Yeo, Joo-Hong
    • BMB Reports
    • /
    • 제50권1호
    • /
    • pp.3-4
    • /
    • 2017
  • Recent advances in genome sequencing technologies have enabled humans to generate and investigate the genomes of wild species. This includes the big cat family, such as tigers, lions, and leopards. Adding the first high quality leopard genome, we have performed an in-depth comparative analysis to identify the genomic signatures in the evolution of felid to become the top predators on land. Our study focused on how the carnivore genomes, as compared to the omnivore or herbivore genomes, shared evolutionary adaptations in genes associated with nutrient metabolism, muscle strength, agility, and other traits responsible for hunting and meat digestion. We found genetic evidence that genomes represent what animals eat through modifying genes. Highly conserved genetically relevant regions were discovered in genomes at the family level. Also, the Felidae family genomes exhibited low levels of genetic diversity associated with decreased population sizes, presumably because of their strict diet, suggesting their vulnerability and critical conservation status. Our findings can be used for human health enhancement, since we share the same genes as cats with some variation. This is an example how wildlife genomes can be a critical resource for human evolution, providing key genetic marker information for disease treatment.

New Record of Two Non-Native Sternotherus Turtles in The Wild of South Korea

  • Hae-Jun Baek;Minjeong Seok;Jongwon Song;Su-Hwan Kim
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제5권2호
    • /
    • pp.55-59
    • /
    • 2024
  • The remarkable economic growth achieved in the modern era has revitalized various industries, including pet trade. More than 2,000 species of non-native species have been introduced to South Korea and approximately 7.7 tonnes of alien turtles are imported annually. Turtles belonging to the family Kinosternidae. They are mostly small and popular pets, although they are designated as Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) species. In the present study, we present the first two species of musk turtles found in the wild in South Korea. On April 5, 2023 and July 8, 2023, an eastern musk turtle (Sternotherus odoratus) and a razorbacked musk turtle (Sternotherus carinatus) were captured in Ilsandong-gu, Goyang-si, Gyeonggi-do and Jung-gu, Daejeon, respectively. The carapace length was 88.6 mm for S. odoratus and 105.68 mm for S. carinatus. They were identified based on their morphological characteristics and mtDNA cytochrome b gene. These turtles were found in waterfront areas with over 1.4 million annual visitors. Both sites were found to have threatened amphibians and reptiles. There is an urgent need to continue monitoring and conducting risk assessments for the protection of endemic species in Korea.

Molecular and Biological Characterization of an Isolate of Cucumber mosaic virus from Glycine soja by Generating its Infectious Full-genome cDNA Clones

  • Phan, Mi Sa Vo;Seo, Jang-Kyun;Choi, Hong-Soo;Lee, Su-Heon;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • 제30권2호
    • /
    • pp.159-167
    • /
    • 2014
  • Molecular and biological characteristics of an isolate of Cucumber mosaic virus (CMV) from Glycine soja (wild soybean), named as CMV-209, was examined in this study. Comparison of nucleotide sequences and phylogenetic analyses of CMV-209 with the other CMV strains revealed that CMV-209 belonged to CMV subgroup I. However, CMV-209 showed some genetic distance from the CMV strains assigned to subgroup IA or subgroup IB. Infectious full-genome cDNA clones of CMV-209 were generated under the control of the Cauliflower mosaic virus 35S promoter. Infectivity of the CMV-209 clones was evaluated in Nicotiana benthamiana and various legume species. Our assays revealed that CMV-209 could systemically infect Glycine soja (wild soybean) and Pisum sativum (pea) as well as N. benthamiana, but not the other legume species.

Cytological Analyses of Iris ruthenica K. Gawl. (Iridaceae), an Endangered Species in Korea

  • Choi, Bokyung;Temsch, Eva M.;Weiss-Schneeweiss, Hanna;So, Soonku;Myeong, Hyeon-Ho;Jang, Tae-Soo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.24-24
    • /
    • 2019
  • Iris L. is a perennial genus comprising approximately 300 species worldwide, with the greatest number of endemic species occurring in Asia. Iris is one of the largest genera in the family Iridaceae and includes ca. 15 species native to Korea. Although chromosome number change, karyotype restructuring, and genome size variation play an important role in plant genome diversification, understanding the karyotype variation in Korean Iris species has been hampered by the wide range of base chromosome number (x = 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22) reported to date. This study documents the chromosome numbers, karyotype structure and genome size variation in Iris ruthenica K. Gawl., an endangered species in Korea obtained using classic Feulgen staining and flow cytometry. The chromosome number of all investigated plants from the nine populations was 2n = 42. All individuals studied possessed metacentric and submetacentric chromosomes. The genome size of the I. ruthenica in eight wild populations ranged from 2.39 pg/1C to 2.45 pg/1C ($2.42{\pm}0.02pg/1C$: $mean{\pm}SD$). This study provides the first report of genome size variation in Iris ruthenica in Korea. This study lays foundation for cytogenetic further analyses employing by fluorescence in situ hybridization (FISH) to better understand the chromosomal evolution in this species and in the whole genus.

  • PDF

감자 근연야생종 Solanum cardiophyllum의 엽록체 전장유전체 구명 및 이를 이용한 S. cardiophyllum 특이적 분자마커의 개발 (Chloroplast genome sequence and PCR-based markers for S. cardiophyllum)

  • 박태호
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.45-55
    • /
    • 2023
  • 멕시코 유래의 2배체 감자 근연야생종 Solanum cardiophyllum은 감자역병, 감자바이러스Y, 콜로라도감자잎벌레 등과 같은 병원균 및 해충에 대한 저항성을 가지고 있어 감자의 신품종 육성에 이용되고 있다. 재배종 감자에 이러한 형질을 도입하기 위해서는 전통적인 교잡육종에 의해 이루어질 수 있으나, 재배종 감자와 근연야생종과의 서로 다른 EBN에 따라 제한적이며, S. tuberosum과 S. cardiophyllum 간에도 생리적 불화합성이 존재한다. 따라서, 이러한 생리적 장벽의 극복을 위해 체세포융합에 의한 체세포잡종 계통을 육성하고 이를 감자 신품종 육성에 활용할 수 있는데, 분자 마커는 적절한 체세포잡종 계통 선발에 필요하다. 이에, 본 연구에서는 S. cardiophyllum의 전체 엽록체 유전체 정보를 구명하고 8개의 다른 Solanum 종의 전체 엽록체 유전체 정보와 비교하여 S. cardiophyllum 특이적인 분자마커를 개발하였다. S. cardiophyllum의 전체 엽록체 유전체의 길이는 155,570 bp였으며, 그 구조와 유전자 구성은 다른 Solanum 종들과 매우 유사하였고 가지과에 속해 다른 32개의 종들과의 계통수 분석을 통해 예상했던 바와 같이 다른 Solanum 종과 같은 그룹에 속해 있고 S. bulbocastanum과의 가장 근접한 유연관계를 확인하였다. S. cardiophyllum의 전체 엽록체 유전체와 8개 다른 Solanum 종의 전체 엽록체 유전체의 다중 정렬 결과로 총 13개의 S. cardiophyllum 특이적인 SNP 영역을 확인하였으며, 이 정보를 이용하여 4개의 PCR 기반 분자마커를 개발하였다. 본 연구의 결과는 S. cardiophyllum의 진화적 측면에서의 연구와 S. cardiophyllum를 이용한 감자 신품종 육성을 위한 연구에 기여를 할 수 있을 것이다.

PCR-based markers developed by comparison of complete chloroplast genome sequences discriminate Solanum chacoense from other Solanum species

  • Kim, Soojung;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • 제46권2호
    • /
    • pp.79-87
    • /
    • 2019
  • One of wild diploid Solanum species, Solanum chacoense, is one of the excellent resources for potato breeding because it is resistant to several important pathogens, but the species is not sexually compatible with potato (S. tuberosum) causing the limitation of sexual hybridization between S. tuberosum and S. chacoense. Therefore, diverse traits regarding resistance from the species can be introgressed into potato via somatic hybridization. After cell fusion, the identification of fusion products is crucial with molecular markers. In this study, S. chacoense specific markers were developed by comparing the chloroplast genome (cpDNA) sequence of S. chacoense obtained by NGS (next-generation sequencing) technology with those of five other Solanum species. A full length of the cpDNA sequence is 155,532 bp and its structure is similar to other Solanum species. Phylogenetic analysis resulted that S. chacoense is most closely located with S. commersonii. Sequence alignment with cpDNA sequences of six other Solanum species identified two InDels and 37 SNPs specific sequences in S. chacoense. Based on these InDels and SNPs regions, four markers for distingushing S. chacoense from other Solanum species were developed. These results obtained in this research could help breeders select breeding lines and facilitate breeding using S. chacoense in potato breeding.