• Title/Summary/Keyword: Wigner distribution

Search Result 70, Processing Time 0.028 seconds

냉각재펌프 진동진단의 온-라인화에 관한 연구

  • 이철권;박희윤;박진석;구인수;하재흥
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.233-238
    • /
    • 1997
  • 위그너분포(Wigner Distribution)를 이용하여 진동신호를 분석하고, 신경회로망을 이용하여 온라인으로 진동발생에 따른 냉각재펌프의 이상상태를 진단하고자 하였다. 진동신호 분석을 위하여 현재 정상 가동중인 원전 냉각재펌프의 진동신호와 Rotor Kit으로부터 이상상태에 대한 모의신호를 추출하였다. 본 연구에서 진동신호 분석을 위하여 시간 및 주파수성분을 동시에 표현가능한 위그너분포 이론을 적용하므로써 기존의 시간 및 주파수성분을 별도로 표현하던 방법보다 신호분석이 용이함을 확인하였으며, 이 신호분석 결과를 바탕으로 역전파 신경회로망의 패턴인식 및 분류 특징을 이용한 진단결과는 실험데이타 량에 비추어 만족할 만한 인식률을 보였다.

  • PDF

Bistatic ISAR Imaging with UWB Radar Employing Motion Compensation for Time-Frequency Transform (시간-주파수 변환에 요동보상을 적용한 UWB 레이다 바이스테틱 ISAR 이미징)

  • Jang, Moon-Kwang;Cho, Choon-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.7
    • /
    • pp.656-665
    • /
    • 2015
  • In this paper, we improved the clarity and quality of the radar imaging by applying motion compensation for time-frequency transform in B-ISAR imaging. The proposed motion compensation algorithm using UWB radar is verified. B-ISAR algorithm procedure and time-frequency transform for improved motion compensation are provided for theoretical ground. The image was created by a UWB Radar B-ISAR imaging algorithm method. Also, creating a B-ISAR imaging algorithm for motion compensation of time-frequency transformation method was used. The B-ISAR Imaging algorithm is implemented using STFT(Short-Time Fourier Transform), GWT(Gabor Wavelet Transform), and WVD(Wigner-Ville Distribution) approaches. The performance of STFT is compared with the GWT and WVD algorithms. It is found that the WVD image shows more clarity and decreased spread phenomenon than other methods.

A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission

  • Kim, Jin-Seop;Kim, Geon-Young;Baik, Min-Hoon;Finsterle, Stefan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • The purpose of this study was to propose a new approach for quantifying in situ rock mass damage, which would include a degree-of-damage and the degraded strength of a rock mass, along with its prediction based on real-time Acoustic Emission (AE) observations. The basic approach for quantifying in-situ rock mass damage is to derive the normalized value of measured AE energy with the maximum AE energy, called the degree-of-damage in this study. With regard to estimation of the AE energy, an AE crack source location algorithm of the Wigner-Ville Distribution combined with Biot's wave dispersion model, was applied for more reliable AE crack source localization in a rock mass. In situ AE wave attenuation was also taken into account for AE energy correction in accordance with the propagation distance of an AE wave. To infer the maximum AE energy, fractal theory was used for scale-independent AE energy estimation. In addition, the Weibull model was also applied to determine statistically the AE crack size under a jointed rock mass. Subsequently, the proposed methodology was calibrated using an in situ test carried out in the Underground Research Tunnel at the Korea Atomic Energy Research Institute. This was done under a condition of controlled incremental cyclic loading, which had been performed as part of a preceding study. It was found that the inferred degree-of-damage agreed quite well with the results from the in situ test. The methodology proposed in this study can be regarded as a reasonable approach for quantifying rock mass damage.

CCTV-Aided Accident Detection System on Four Lane Highway with Calogero-Moser System (칼로게로 모제 시스템을 활용한 4차선 도로의 사고검지 폐쇄회로 카메라 시스템)

  • Lee, In Jeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.255-263
    • /
    • 2014
  • Today, a number of CCTV on the highway is to observe the flow of traffics. There have been a number of studies where traffic data (e.g., the speed of vehicles and the amount of traffic on the road) are transferred back to the centralized server so that an appropriate action can be taken. This paper introduces a system that detects the changes of traffic flows caused by an accident or unexpected stopping (i.e., vehicle remains idle) by monitoring each lane separately. The traffic flows of each lane are level spacing curve that shows Wigner distribution for location vector. Applying calogero-moser system and Hamiltonian system, probability equation for each level-spacing curve is derived. The high level of modification of the signal means that the lane is in accident situation. This is different from previous studies in that it does more than looking for the signal from only one lane, now it is able to detect an accident in entire flow of traffic. In process of monitoring traffic flow of each lane, when camera recognizes a shadow of vehicle as a vehicle, it will affect the accident detecting capability. To prevent this from happening, the study introduces how to get rid of such shadow. The system using Basian network method is being compared for capability evaluation of the system of the study. As a result, the system of the study appeared to be better in performance in detecting the modification of traffic flow caused by idle vehicle.

Energy Distribution Characteristics of Nonstationary Acoustic Emission Burst Signal Using Time-frequency Analysis (비정상 AE 진동감시 신호의 에너지 분포특성과 시간-주파수 해석)

  • Jeong, Tae-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.291-297
    • /
    • 2012
  • Conventional Fourier analysis can give only limited information about the dynamic characteristics of nonstationary signals. Instead, time-frequency analysis is widely used to investigate the nonstationary signal in detail. Several time-frequency analysis methods are compared for a typical acoustic emission burst generated during the impact between a ferrite ceramic and aluminum plate. This AE burst is inherently nonstationary and random containing many frequency contents, which leads to severe interference between cross terms in bilinear convolution type distributions. The smoothing and reassignment processes can improve the readability and resolution of the results. Spectrogram and scalogram of the AE burst are obtained and compared to get the characteristics information. Renyi entropies are computed for various bilinear time-frequency transforms to evaluate the randomness. These bilinear transforms are reassigned by using the improved algorithm in discrete computation.

Combustion Condition Monitoring of the Marine Diesel Engine using Acceleration Signal of Cylinder Head (실린더 헤더의 가속도 신호를 이용한 선박용 디젤엔진의 연소 상태 모니터링)

  • Seo, Jong-Cheol;Kim, Sang-Hwan;Lee, Don-Chool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.607-610
    • /
    • 2009
  • The abnormal combustion in the running engine results to knocking which increases the pressure and temperature in the cylinder, thereby decreasing the generated power by reducing the thermal efficiency. When the temperature and pressure in the cylinder increased rapidly by knocking, abnormal combustion takes place and the engine power is decreased. To investigate the knocking phenomenon, accelerometers are installed in the cylinder head to monitor and diagnose the vibration signal. As method of signal analysis, the time-frequency analysis method was adapted for acquisition of vibration signal and analyzes engine combustion in the short time. In this experiment, after analyzing time data which is stored in the signal recorder in one unit work (4 strokes: 2 revolutions), the signal with frequency and Wavelet methods with extracted one engine combustion data was also analyzed. Then, normal condition with no knocking signal is analyzed at this time. Hereafter, the experiments made a standard for distinguishing normal and abnormal condition to be carried out in acquisition of vibration signal at all cylinders and extracting knocking signal. In addition, analyzing methods can be diverse with Symmetry Dot Patterns (SDP), Time Synchronous Average (TSA), Wigner-Ville Distribution (WVD), Wigner-Ville Spectrum (WVS) and Mean Instantaneous Power (MIP) in the cold test [2]. With signal processing of vibration from engine knocking sensor, the authors adapted a part of engine /rotor vibration analysis and monitoring system for marine vessels to prevent several problems due to engine knocking

  • PDF

Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation (초음파 에코파형의 웨이브렛 변환과 비파괴평가에의 응용)

  • Park, Ik-Keun;Park, Un-Su;Ahn, Hyung-Keun;Kwun, Sook-In;Byeon, Jai-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.501-510
    • /
    • 2000
  • Recently, advanced signal analysis which is called "time-frequency analysis" has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and naw sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch.

  • PDF

The Spectral properties of Knee Joint Sounds (슬관절 청진음의 주파수 특성에 대한 연구)

  • Kim, Keo-Sik;Yoon, Dae-Young;Lee, Myung-Gwon;Song, Chang-Hun;Kim, Ji-Sun;Park, Seong-Su;Kim, Jong-Jin;Kim, Ji-Hun;Lee, Gil-Seong;Lee, Min-Hee;Chae, Min-Su;Kim, Min-Ju;Song, Chul-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.310-312
    • /
    • 2004
  • The aim of this study was to analyze the characteristics of knee joint sound in frequency domain and classify the knee joint diseases. The spectral analysis of knee joint sounds was performed using LPC(Linear Predictive Coding) and Wigner-Ville distribution. Ten normal subjects and 5 patients with meniscal tearing were enrolled. Each subject was seated on a chair and underwent active knee flexion and extension for 60 seconds. Sampling frequency was 10kHz and electronic stethoscope and electro-goniometer were applied during the knee motion for data collection. The spectral analysis showed 3 peaks in both groups and the difference energy distribution in time-frequency domain. These results suggest that the diagnosis of knee joint pathology using the auscultation could be easier and more correct.

  • PDF

A Study on the Design of Low Back Muscle Evaluation System Using Surface EMG (표면근전도를 이용한 허리근육 평가시스템의 설계에 관한 연구)

  • Lee Tae-Woo;Ko Do-Young;Jung Chul-Ki;Kim In-Soo;Kang Won-Hee;Lee Ho-Yong;Kim Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.5
    • /
    • pp.338-347
    • /
    • 2005
  • A computer-based low back muscle evaluation system was designed to simultaneously acquire, process, display, quantify, and correlate electromyographic(EMG) activity with muscle force, and range of motion(ROM) in the lumbar muscle of human. This integrated multi-channel system was designed around notebook PC. Each channel consisted of a time and frequency domain block, and T-F(time-frequency) domain block. The captured data in each channel was used to display and Quantify : raw EMG, histogram, zero crossing, turn, RMS(root mean square), variance, mean, power spectrum, median frequency, mean frequency, wavelet transform, Wigner-Ville distribution, Choi-Williams distribution, and Cohen-Posch distribution. To evaluate the performance of the designed system, the static and dynamic contraction experiments from lumbar(waist) level of human were done. The experiment performed in five subjects, and various parameters were tested and compared. This system could equally well be modified to allow acquisition, processing, and analysis of EMG signals in other studies and applications.