• Title/Summary/Keyword: Wigley Hull

Search Result 47, Processing Time 0.021 seconds

Study on the Added Resistance of Barge in Waves (부선의 파랑중 저항 증가에 관한 연구)

  • Ahn, Byung-Kil;Lee, Sang-Min
    • Journal of Navigation and Port Research
    • /
    • v.34 no.10
    • /
    • pp.741-746
    • /
    • 2010
  • It is necessary to estimate more accurately the resistance of barge in still water and waves to compute the break load of towline and towing power for safety towing performance. The method proposed by government has calculated the total resistance of barge which is composed of frictional resistance, wave making resistance and air resistance considering the shape of hull and towing speed. However, the added resistance is equally applied with the significant wave height regardless of the type of vessels. In this study, we have carried out the numerical calculation to estimate the added resistance of wigley model in waves and compared with the experiment data to confirm the accuracy of the method. Then the computation was executed for the barge varying shape of the bow. As a result, added resistance of barge was differently occurred i.e. 0.3∼1.1 ton according to encounter angle, 0.4∼1.2 ton according to towing speed and 0.5∼1.1 ton according to shape of bow.

Theoretical Analysis of Linear Maneuvering Coefficients with Water Depth Effect (수심의 영향을 고려한 선형(線形) 조종성 계수의 이론적 해석)

  • In-Young Gong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.47-58
    • /
    • 1994
  • Theoretical calculations are carried out for the estimation of linear maneuvering coefficients of a ship moving in shallow water region. Hydrodynamic forces and moments acting on a maneuvering ship are modelled based on a slender body theory, from which integro-differential equation for the unknown inner stream velocity is derived. Numerical algorithms fur solving this equation are described in detail. By considering water depth effects in the mathematical model, variations of maneuvering coefficients with water depth are studied. Programs are developed according to this method and calculations are done for Mariner, Series 60 and Wigley hull forms. For the verification of the programs, calculated results are compared with some analytic solutions and with published experimental results, which show good agreements in spite of many assumptions included in the mathematical model. It is expected that this method can be used as a preliminary tool for the estimation of maneuverability coefficients of a ship in shallow water region at its initial design stage.

  • PDF

A Study on the Numerical Radiation Condition in the Steady Wave Problem (정상파 문제의 방사조건에 관한 연구)

  • Lee, Gwang-Ho;Jeon, Ho-Hwan;Seong, Chang-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.97-110
    • /
    • 1998
  • The numerical damping and dispersion error characteristics associated with difference schemes and a panel shift method used for the calculation of steady free surface flows by a panel method are an analysed in this paper. First, 12 finite difference operators used for the double model flow by Letcher are applied to a two dimensional cylinder with the Kelvin free surface condition and the numerical errors with these schemes are compared with those by the panel shift method. Then, 3-D waves due to a submerged source are calculated by the difference schemes, the panel shift method and also by a higher order boundary element method(HOBEM). Finally, the waves and wave resistance for Wigley's hull are calculated with these three schemes. It is shown that the panel shift method is free of numerical damping and dispersion error and performs better than the difference schemes. However, it can be concluded that the HOBEM also free of the numerical damping and dispersion error is the most stable, accurate and efficient.

  • PDF

Code Development for Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석 코드 개발)

  • Kim J.J.;Kim H.T.;Van S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.145-155
    • /
    • 1998
  • A computer code has been developed for the computation of the viscous flow around a ship model with the free surface. In this code, the incompressible Reynolds-averaged Navier-Stokes equations are solved numerically by a finite difference method which employes second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration of the governing equations. For the turbulence closure, a modified version of the Baldwin-Lomax model is exploited. The location of the free surface is determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and the boundary-fitted grid is generated at each time step so that one of the grid surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition is applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method and the computer code developed in the present study, the numerical computations are carried out for both Wigley parabolic hull and Series 60 $C_B=0.6$ ship model and the computational results are compared with the experimental data.

  • PDF

Hybrid radiation technique of frequency-domain Rankine source method for prediction of ship motion at forward speed

  • Oh, Seunghoon;Kim, Booki
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.260-277
    • /
    • 2021
  • The appropriate radiation conditions of ship motion problem with advancing speed in frequency domain are investigated from a theoretical and practical point of view. From extensive numerical experiments that have been conducted for evaluation of the relevant radiation conditions, a hybrid radiation technique is proposed in which the Sommerfeld radiation condition and the free surface damping are mixed. Based on the comparison with the results of the translating and pulsating Green function method, the optimal damping factor of the hybrid radiation technique is selected, and the observed limitations of the proposed hybrid radiation technique are discussed, along with its accuracy obtained from the numerical solutions. Comparative studies of the forward-speed seakeeping prediction methods available confirm that the results of applying the hybrid radiation technique are relatively similar to those obtained from the translating and pulsating Green function method. This confirmation is made in comparisons with the results of solely applying either the free surface damping, or the Sommerfeld radiation condition. By applying the proposed hybrid radiation technique, the wave patterns, hydrodynamic coefficients, and motion responses of the Wigley III hull are finally calculated, and compared with those of model tests. It is found that, in comparison with the model test results, the three-dimensional Rankine source method adopting the proposed hybrid radiation technique is more robust in terms of accuracy and numerical stability, as well as in obtaining the forward speed seakeeping solution.

Analysis of Added Resistance using a Cartesian-Grid-based Computational Method (직교격자 기반 수치기법을 이용한 부가저항 해석)

  • Yang, Kyung-Kyu;Lee, Jae-Hoon;Nam, Bo-Woo;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.79-87
    • /
    • 2013
  • In this paper, an Euler equation solver based on a Cartesian-grid method and non-uniform staggered grid system is applied to predict the ship motion response and added resistance in waves. Water, air, and solid domains are identified by a volume-fraction function for each phase and in each cell. For capturing the interface between air and water, the tangent of hyperbola for interface capturing (THINC) scheme is used with a weighed line interface calculation (WLIC) method. The volume fraction of solid body embedded in a Cartesian-grid system is calculated by a level-set based algorithm, and the body boundary condition is imposed by volume weighted formula. Added resistance is calculated by direct pressure integration on the ship surface. Numerical simulations for a Wigley III hull and an S175 containership in regular waves have been carried out to validate the newly developed code, and the ship motion responses and added resistances are compared with experimental data. For S175 containership, grid convergence test has been conducted to investigate the sensitivity of grid spacing on the motion responses and added resistances.

Analysis of Large-Amplitude Ship Motions Using a Cartesian-Gridbased Computational Method (직교격자 기반 수치기법을 이용한 선박의 대변위 운동해석)

  • Yang, Kyung-Kyu;Nam, Bo-Woo;Lee, Jae-Hoon;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.461-468
    • /
    • 2012
  • In this study, a Cartesian-grid method based on finite volume approach is applied to simulate the ship motions in large amplitude waves. Fractional step method is applied for pressure-velocity coupling and TVD limiter is used to interpolate the cell face value for the discretization of convective term. Water, air, and solid phases are identified by using the concept of volume-fraction function for each phase. In order to capture the interface between air and water, the tangent of hyperbola for interface capturing (THINC) scheme is used with weighed line interface calculation (WLIC) method which considers multidimensional information. The volume fraction of solid body embedded in the Cartesian grid system is calculated using a level-set based algorithm, and the body boundary condition is imposed by a volume weighted formula. Numerical simulations for the two-dimensional barge type model and Wigley hull in linear waves have been carried out to validate the newly developed code. To demonstrate the applicability for highly nonlinear wave-body interactions such as green water on the deck, numerical analysis on the large-amplitude motion of S175 containership is conducted and all computational results are compared with experimental data.