• Title/Summary/Keyword: Width-to-Height ratio

Search Result 484, Processing Time 0.027 seconds

Numerical Optimization of Heat Transfer Surfaces with Staggered Ribs (엇갈린 리브가 부착된 열전달면의 수치최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.735-740
    • /
    • 2003
  • In this study, a numerical optimization to find the optimal shape of streamwise periodic ribs mounted on both of the principal walls is performed to enhance turbulent heat transfer in a rectangular channel. The optimization is based on Navier-Stokes analysis of flow and heat transfer with $k-{\varepsilon}$ turbulence model and is implemented using response surface method. The width-to-height ratio of a rib, rib height-to-channel height ratio, rib pitch to rib height ratio and distance between opposite ribs to rib height ratio are chosen as design variables. The object function is defined as a function of heat transfer coefficient and friction drag coefficient with weighting factor. Optimum shapes of the rib have been investigated for the range of 0.0 to 0.1 of weighting factor.

  • PDF

Development of Allometry and Individual Basal Area Growth Model for Major Species in Korea (우리나라 주요수종의 Allometry와 개체목 흉고단면적 생장모델 개발)

  • Choi, Jung-Kee
    • Journal of Forest and Environmental Science
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2011
  • Allometry and basal area equations were developed with various tree measurement variables for the major species; Quercus variabilis, Quercus mongolica, Pinus koraiensis and Larix leptolepis in Korea. For allometry models, the relationships between total height-DBH, crown width-DBH, height to the widest portion of the crown-total height, and height to base of crown-total height were investigated. Multiple regression methods were used to relate annual basal area growth to tree variables of initial size (DBH, total height, and crown width), relative size (relative diameter and relative height) as well as competition measures (competition index, crown class, and live crown ratio).

A New Approach to Design Method of the Solar Compound Parabolic Concentrator with Tubular Absorber (태양열집속집열기의 설계 방법에 관한 연구)

  • Kim, Seok-Jong;Lim, Sang-Hoon
    • KIEAE Journal
    • /
    • v.2 no.3
    • /
    • pp.33-38
    • /
    • 2002
  • The intermediate range of temperatures($100{\sim}300^{\circ}C$) which can be achieved with CPCs(Compound Parabolic Concentrators) without tracking device provides both economic and thermal advantages for solar collector design. The present paper summarizes critical design considerations for CPC with cylindrical absorber and its optical performance using ray tracing program. Concentration ratios vary as acceptance half angle, ratio of reflector height to aperture width and ratio of reflector area to aperture area. This effects showed that the concentration ratio was increased as acceptance angle but optimum ratio of reflector height to aperture width existed at critical value. As a result of ray tracing, solar ray losses was maximized at acceptance half angle and this problem was solved by increasing absorber tube diameter. The concentrating flux distribution on the absorber surface was uniform but peak flux existed.

Void Closing Conditions of Large Ingot by Path Schedules (대형 잉곳의 기공압착 효과 향상을 위한 폐쇄조건 연구)

  • Choi, I.J.;Choi, H.J.;Kim, D.W.;Choi, S.;Lim, S.J.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.480-485
    • /
    • 2010
  • In this work, the closing behavior of cylindrical-shaped voids was experimentally investigated according to various parameters such as reduction ratio in height, initial void size and billet rotation during hot open die forging process. The reduction ratio in height, number of path, and billet rotation were chosen as key process parameters which influence the void closing behavior including the change of void shape and size. On the other hand, values of die overlapping and die width ratio were set to be constant. Void closing behavior was estimated by microscopic observation. Based on the observations, it was confirmed that application of billet rotation is more efficient to eliminate the void with less reduction ratio in height. The experimental results obtained from this study could be helpful to establish the optimum path schedule of open die forging process.

The level of buccal gingival margin around single and two adjacent implant restorations: a preliminary result

  • Kim, Young-Bum;Shim, June-Sung;Han, Chong-Hyun;Kim, Sun-Jai
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.3
    • /
    • pp.140-144
    • /
    • 2009
  • STATEMENT OF PROBLEM. Little information is available about the buccal gingival level of multiple implant restorations. PURPOSE. This study was aimed to evaluate the relationship between width and height of buccal soft tissue around single and 2 adjacent implant restorations. MATERIAL AND METHODS. Four implant restoration groups (first and second molars, single second molars, posterior single restorations between teeth, and anterior single restorations between teeth) were randomly chosen from one dental institute. Each group comprised of 6 patients. After 6 months of function, silicone impressions were taken and stone models were fabricated for each restoration group. The stone models were cut in bucco-lingual direction at the most apical point of buccal gingival margin. The height and width of buccal supra-implant soft tissue were measured. One way ANOVA and Tukey HSD post hoc tests were performed to analyze the data obtained (P < .05). RESULTS. The most unfavorable width-height ratio was noted for the group, which was comprised of the second molar in the multiple adjacent (first and second molar) implant-supported restorations. The group also resulted in the shorter height of buccal supra-implant mucosa rather than that of anterior single implant restorations between natural teeth. CONCLUSION. To achieve a favorable level of buccal gingival margin, greater thickness of buccal supra-implant mucosa is required for the implant restorations without a neighboring natural tooth compared to the implant restorations next to a natural tooth.

Harvesting Performance of the Prototype Small Combine for Buckwheat and Adlay

  • Yoo, Soonam;Lee, Changhoon;Lee, Beom Seob;Yun, Young Tae
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.320-330
    • /
    • 2018
  • Purpose: The aim of this study was to investigate the harvesting performance of a prototype small combine for buckwheat and adlay. Methods: The prototype small combine was designed and constructed. Its ratio of grain loss, ratio of output components in the grain outlet, and field capacity for harvesting buckwheat and adlay were analyzed through field tests. Results: The prototype small combine required a working width of about 0.6 to 0.7 m to harvest buckwheat. The maximum travel speed was about 0.36 m/. The total ratio of grain loss was about 21.6%, which consisted of 8.8% at the header and 12.8% at the dust outlet. The grain and the material other than grain (MOG) ratios at the grain outlet were 94.1% and 5.9% respectively. In the case of adlay harvest, the maximum working width was about 1.2 m, that is, two rows. The range of maximum travel speed was about 0.45 to 0.46 m/s. When adlay was harvested in one row, the total ratio of grain loss ranged from 36.3 to 42.8% according to the cutting height. The cutting height of 30 cm resulted in a higher total ratio of grain loss than 60 cm and 90 cm. When the cutting height was 60 cm, there was no significant change in the total ratio of grain loss according to the number of working rows and the stage of the primary transmission shift. The total ratio of grain loss ranged from 35.2 to 37.7%. The grain and the MOG ratios at the grain outlet ranged from 93.1 to 95.8% and from 4.2 to 6.9%, respectively. No significant difference was observed in relation to cutting height, number of working rows, and the stage of the primary transmission shift. Conclusions: The prototype small combine for harvesting miscellaneous cereal crops showed good potential for the efficient harvesting of buckwheat and adlay. However, to improve the harvesting performance, there seems to be a need to develop new crop varieties suitable for machine-based harvesting and improve the transmissions, reels, separation/cleaning systems.

Influence of Fluid Height and Structure width ratio on the Dynamic Behavior of Fluid in a Rectangular Structure (사각형 구조물에 저장된 유체의 동적거동에 유체높이와 구조물 폭의 비가 미치는 영향)

  • Park, Gun;Yoon, Hyungchul;Hong, Ki Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.126-134
    • /
    • 2020
  • In the case of an earthquake, the fluid storage structure generates hydraulic pressure due to the fluctuation of the fluid. At this time, the hydraulic pressure of the fluid changes not only the peaked acceleration of the earthquake but also the sloshing height of the fluid free water surface. Factors influencing this change in load include the shape of the seismic wave, the maximum seismic strength, the size of the fluid storage structure, the width of the structure, and the height of the fluid. In this study, the effect of the ratio between the height of the fluid and the width of the structure was investigated on the fluctuation characteristics of the fluid. 200mm and 140mm of fluid were placed in a water storage tank with a width of 500mm, and a real seismic wave was applied to measure the shape of the fluctuation of the fluid free water surface. The similarity between the experiment and the analysis was verified through the S.P.H(Smoothed Particle Hydrodynamic) technique, one of the numerical analysis techniques. It was confirmed that the free water surface of the fluid showed a similar shape, through comparison of experiment and analysis. And based on this results, SPH technique was applied to analyze the fluctuation shape of the fluid free water surface while varying the ratio between the fluid height and the structure width. An equation to predict the maximum and minimum heights of the fluid free water surface during an earthquake was proposed, and it was confirmed that the error between the maximum and minimum heights of the fluid free water surface predicted by the proposed equation was within a maximum of 3%.

Fabrication of Micro Wall with High Aspect Ratio using Iterative Screen Printing

  • Yoon, Seong-Man;Jo, Jeong-Dai;Yu, Jong-Su;Yu, Ha-Il;Kim, Dong-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1486-1489
    • /
    • 2009
  • Micro wall is fabricated using iterative screen printing that it is able to fabricate the pattern as low cost, simple process, formation of pattern at large area on the various substrates. In the process of micro wall fabrication using screen printing, the printing result with pressure change in process and improvement of surface roughness using hydrophillic plasma treatment are included. Height of micro wall increase linearly and precision of iteration is very high. Error rate of printed pattern width is very high, but change rate of width is under 10 %. Fabricated micro pattern have minimum width $48.75{\mu}m$ and maximum height $75.45{\mu}m$ with aspect ratio 1.55.

  • PDF

The correlation among the oral & facial states and the gummy smile in female college students (일부 여대생의 구강 및 안모상태와 치은노출(Gummy smile)과의 상관성)

  • So, Mi-Hyun
    • Journal of Korean society of Dental Hygiene
    • /
    • v.12 no.2
    • /
    • pp.345-353
    • /
    • 2012
  • Objectives : The author has studied about correlation of gingival exposure upon smiling and oral facial status that reduce facial aesthetic. Methods : The subjects in this study are 91 female vulunteers who were in aged $21.4{\pm}1.89$ in Suwon. Objectives should be normal oral and facial status without the prosthodontic, orthodontic appliance or conqenital missing tooth, and agree to be examined the oral status and impression taking. 1.Measure the length of gingival exposure upon smiling. 2.Measure of the size on central incisor. 3.Measure of Facial. SPSS(SPSS 10.0 for windows, SPSS Inc, Chicago, USA) was utilized for calculating the correlation coefficient between gingival exposure upon smiling and facial status. Regression analysis was calculated in order to predict the R square for gingival exposure upon smiling. Results : 1.Correlation coefficient between the gingival exposure and length of maxillary central incisor was calculated as reversed correlation(r=-.302, p<0.01), and between the gingival exposure and the ratio of the length of central incisor/width of central incisor was revealed as reversed correlation(r=-.250, p<0.05) on smiling. 2.There was correlation between the gingival exposure and the facial height(r=.351, p<0.01), the lower facial height(r=.454, p<0.01) and the upper lip height(r=.274, p<0.01) upon smiling. 3.There was correlation between the gingival exposure and the ratio of the facial height/facial width(r=.358, p<0.05), the ratio of the upper facial height/facial width(r=.214, p<0.05), and the ratio of the lower facial height/facial height(r=.383, p<0.01) upon smiling. 4.The equation of the regression analysis for gingival exposure upon smiling could be estimated as gingival exposure upon smiling=-5.139+.279${\times}$lower facial height-.615${\times}$maxillary central incisal length-.05${\times}$nasolabial angle. Conclusions : Considering these results, it recommended that treatment planning should be designed in consideration of such factors as the length of maxillary central incisor, facial height, upper lip height and lower facial height, in order to promote the easthetic problems of face on smiling.

Geometrical dimensions effects on the seismic response of concrete gravity dams

  • Sevim, Baris
    • Advances in concrete construction
    • /
    • v.6 no.3
    • /
    • pp.269-283
    • /
    • 2018
  • This study presents the effects of geometrical dimensions of concrete gravity dams on the seismic response considering different base width/dam height (L/H) ratios. In the study, a concrete gravity dam with the height of 200 m is selected and finite element models of the dam are constituted including five different L/H ratios such as 0.25, 0.5, 0.75, 1.00, 1.25. All dams are modeled in ANSYS software considering dam-reservoir-foundation interaction. 1989 Loma Prieta earthquake records are applied to models in upstream-downstream direction and linear time history analyses are performed. Dynamic equilibrium equations of motions obtained from the finite element models of the coupled systems are solved by using Newmark time integration algorithm. The seismic response of the models is evaluated from analyses presenting natural frequencies, mode shapes, displacements and principal stresses. The results show that the L/H ratios considerably affect the seismic response of gravity dams. Also, the model where L/H ratio is 1.00 has more desirable results and most appropriate representation of the seismic response of gravity dams.