• Title/Summary/Keyword: Width ratio

Search Result 2,573, Processing Time 0.041 seconds

Effect of Soil Moisture Content on Photosynthesis and Root Yield of Panax ginseng C. A. Meyer Seedling (토양수분함량이 묘삼의 광합성 및 근 수량에 미치는 영향)

  • Lee, Sung-Woo;Hyun, Dong-Yun;Park, Chun-Geun;Kim, Tae-Soo;Yeon, Byeong-Yeol;Kim, Chung-Guk;Cha, Seon-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.6
    • /
    • pp.367-370
    • /
    • 2007
  • To make the soil moisture proper is the important factor in the seedbed cultivation of Yangjik for producing a good quality of ginseng seedling. This study was carries out to investigate the effect of soil moisture on photosynthesis and yield of ginseng seedling under the different condition of the soil moisture, such as $100{\sim}400$ mbar. Photosynthesis rate was decreased gradually by the reduction of soil moisture, and in particular it was decreased distinctly under the lower condition of soil moisture, such as $300{\sim}400$ mbar. Photosynthesis rate in air temperature of $30^{\circ}C$ was decreased more distinct than that of $25^{\circ}C$, Light saturation point of leaves was at the quantum of $600{\mu}mol/m^3/s$ at $25^{\circ}C$ while it was decreased by $300{\mu}mol/m^3/s$ at $30^{\circ}C$ according to the increase of air temperature. Respiration rate was increased by the increase of quantum, and decreased by the reduction of soil moisture. Respiration rate under the condition of high quantum was increased regardless of air temperature, but it was decreased distinctly under the condition of low soil moisture and high air temperature, such as 400 mbar at $30^{\circ}C$. There were a gradual decrease by the reduction of soil moisture in leaf length, leaf width, chlorophyll content, and water content of leaves, but heat injury ratio was increased distinctly by the reduction of it. Total root weight, root weight per plant, the yield of usable seedling were decreased by the reduction of soil moisture, and optimal content of soil moisture to produce a good quality of seedling was 63% of field capacity or 18.9% in absolute soil moisture content.

Flexural Test of H-Shape Members Fabricated of High-Strength Steel with Considering Local Buckling (국부좌굴을 고려한 고강도 조립 H형강 부재의 휨성능 실험)

  • Lee, Cheol-Ho;Han, Kyu-Hong;Park, Chang-Hee;Kim, Jin-Ho;Lee, Seung-Eun;Ha, Tae-Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.417-428
    • /
    • 2011
  • Depending on the plastic deformation capacity required, structural steel design under the current codes can be classified into three categories: elastic, plastic, and seismic design. Most of the current steel codes explicitly forbid the use of a steel material with a yield strength higher than 450 MPa in the plastic design because of the concerns about its low plastic deformation capacity as well as the lack of test data on local and lateral torsional buckling behavior. In this study, flexural tests on full-scale H-shape members built with SM490A (ordinary steel or benchmark material) and HSB800 (high-strength steel) were carried out. The primary objective was to investigate the appropriateness of extrapolating the local buckling criterion of the current codes, which was originally developed for normal-strength steel, to the case of high-strength steel. All the SM490A specimens performed consistently with the current code criteria and exhibited sufficient strength and ductility. The performance of the HSB800 specimens was also very satisfactory from the strength perspective; even the specimens with a noncompact and slender flange developed the plastic moment capacity. The HSB800 specimens, however, showed an inferior plastic rotation capacity due to the premature tensile fracture of the beam bottom flange beneath the vertical stiffener at the loading point. The plastic rotation capacity that was achieved was less than 3 (or the minimum level required for a plastic design). Although the test results in this study indicate that the extrapolation of the current flange local-buckling criterion to the case of high-strength steel is conservative from the elastic design perspective, further testing together with an associated analytical study is required to identify the causes of the tensile fracture and to establish a flange slenderness criterion that is more appropriate for high-strength steel.

Effects of Mixture Application of Concentrated Pig Slurry and Byproduct Liquid Fertilizer on the Growth and Yield of Chinese Cabbage (돈분뇨 농축액비와 부산물액비 혼합시용이 배추의 생육과 수량에 미치는 영향)

  • Ryoo, Jong-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.2
    • /
    • pp.271-282
    • /
    • 2010
  • This study was conducted to investigate the effects of concentrated pig slurry and byproduct liquid fertilizer on the growth and yield of chinese cabbage. The experiment was conducted in a rain-shelter house which was installed in the agriculture farm. Plants were fertilized with concentrated slurry (CS), byproduct fertilizer (BF), mixture of concentrated slurry and byproduct liquid fertilizer (CS+BF), combined organic and chemical fertilizer (CS+BF+BF) and chemical fertilizer (CF) as control. 1. The pH level of byproduct liquid was decreased from the 3rd to the 7th day and increased 9 day to 14th day, but pH of concentrated slurry (CS) was not greatly varied. EC of concentrated slurry (CS) and byproduct liquid was increased gradually during the fermentation. 2. The concentrated slurry (CS) was low in phosphorus, calcium, magnesium, rich in potassium and unbalanced as a low nitrogen and high potassium. But byproduct liquid fertilizer was balanced in nitrogen and potassium ratio. 3. The leaf number, head height, head width of chinese cabbage in treatment with organic and chemical fertilizer (CS+BF+N) showed significant difference compared with control. The plant and head weight of chinese cabbage in treatment of concentrated slurry was severely decreased, but that in treatment organic and chemical fertilizer (CS+BF+N) were increased 8, 10% compared with control chemical fertilizer (CF), respectively. 4. The content of $K_2O$ in plant tissue and in soil was increased after using concentrated slurry. On the other hand, mineral content of except $K_2O$ did not differ significantly between any of the treatments. In conclusion, organic and chemical fertilizer (CS+BF+N) could improve growth and head weight of chinese cabbage.

Development of Near Isogenic Lines with Various Seed Sizes and Study on Seed Size-related Characteristics in Watermelon (다양한 종자크기를 가진 Near Isogenic 수박 계통 육성 및 종자관련 특성 분석)

  • Kim, Yong-Jae;Yang, Tae-Jin;Park, Young-Hoon;Lee, Yong-Jik;Kang, Sun-Cheol;Kim, Yong-Kwon;Cho, Jeoung-Lai
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.403-411
    • /
    • 2009
  • We inspected seed sizes of 353 genetic accessions of watermelon to diversify functional utility related to seed size and classified them into six representative groups based on their seed sizes. Each group was named as giant seed (GS), big seed (BS), medium size (NS), small size (SS), micro seed (MS) and tomato seed (TS) from the biggest. As the seed size was getting smaller, decreased seed length and seed width, increased seed number per fruit, and decreased seed weight per fruit were observed, but seed shape did not change significantly. In order to study the effect of seed size on fruit weight and seed germination, we developed three near isogenic lines (NILs) with three different seed sizes, SS, MS and TS, from crossing between two accessions 'NT' and 'TDR', and one NIL with seed size of TS from crossing between two accessions 'S55' and 'TDR'. In the study on the fruit weight of NILs with various seed sizes, NS, SS, MS, and TS NILs produced an average of 6.4, 6.3, 5.9, and 4.2 kg fruits, respectively. The bigger seed types showed the better germination rate. NS type showed the highest germination percentage, while TS showed very low germination percentage. Fermentation treatment for 48 hrs increased the germination percentage on TS type seed, but still remained at a low level. In NS, SS, and MS material, the ratio of embryo/whole seed weight was over 50%, meanwhile that of TS was only 44.4% of which low embryo percentage would be one of the reason of low germination percentage. From this study, we concluded that watermelon has very wide genetic diversity on seed size which is somehow related to fruit sizes and germination rate.

A study on the design and applicability of stereoscopic sign for improving the visibility of traffic sign in double-deck tunnel (복층터널 교통표지판 시인성 향상을 위한 입체표지판 설계 및 적용 가능성에 대한 연구)

  • Park, Sang-Heon;Hwang, Ju-Hwan;Han, Sang-Ju;An, Sung-Joo;Kim, Hoon-Jae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.899-915
    • /
    • 2018
  • In this study, in order to construct an eco-friendly advanced road transportation network, the multi-layer tunnel, which is a small-sized car road, is designed to have a height of less than 60 cm. However, the shape of the tunnel is low and the height of the traffic sign is small. In order to solve these problems, traffic sign characters were designed in three dimensions, and the possibility of applying the design of the three - dimensional sign that can obtain greater visibility than the existing signs at the same distance and the possibility verification through virtual simulation were performed. The three-dimensional sign is horizontally installed on the ceiling of the multi-layer tunnel. To be seen vertically, it is enlarged by a certain ratio by the perspective, and the width and height are enlarged. Respectively. In addition, 3D simulation was performed to verify the visibility of the stereoscopic signs when the driver ran through the stereoscopic sign design specifications. As a result of the design and experimental study, it was confirmed that the stereoscopic sign could be designed through the theoretical formula and that it could provide the driver with a larger traffic sign character because there is no limitation of the facility limit compared to the existing vertical traffic sign. Also, we confirmed that it can be implemented in the side wall by using the stereoscopic sign design principle installed on the ceiling part. It was confirmed that the design of the stereoscopic sign can be designed to be smaller as the distance that the driver visually recognizes the sperm is shorter, the height of the protrusion vertically at the lower part of the stereoscopic sign becomes higher. As a result of 3D simulation running experiment based on the design information of the stereoscopic sign, it was confirmed that the stereoscopic sign is visually the same as the vertical sign at the planned distance. Although the detailed research and institutional improvement of stereoscopic signs have not been made in Korea and abroad, it is evolved into a core technology of new road traffic facilities through various studies through the possibility of designing and applying stereoscopic signs developed through this study Expect.

Growth and Fruiting Characteristics, and Nut Qualities of Castanea crenata by Low-Concentrated Liquid Fertilizer (저농도 액비처리에 따른 밤나무 생장 및 결실특성과 과실품질)

  • Lee, Uk;Hwang, Suk-In;Kim, Mahn-Jo;Kim, Ji-Hye
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.432-440
    • /
    • 2011
  • The objective of this study was to investigate growth and fruiting characteristics (e.g., nut qualities) of chestnut (Castanea cerenata) after applying various fertilizer treatments at the cultivation site in Suncheon. Fertilizer treatments were designed as follow: liquid fertilizer, chemical fertilizer, organic fertilizer, and control. Both liquid and chemical fertilizer treatments provided the best growth in height and basal diameter. In addition, these two treatments were very effective for crown width of the trees between both east-west and north-south orientation. The liquid fertilizer treatment was effective on total length of the fruiting branch and length of the bearing to terminate part. Both liquid and chemical fertilizer treatments produced the longest length of basal to bearing part compared to the other two treatments. The liquid fertilizer treatment showed the most thickened basal diameter of the fruiting branch and the greatest diameter of above and below the bearing burr part. Elongation Index of the fruiting branch (EI) was the highest with liquid fertilizer treatment and the remaining four indices (Production Index of fruiting branch, PI; Ratio of Diameter between below and above bearing burr part, RD; Growth Index of fruiting branch diameter, GI; Thickness Index of fruiting branch or dormant branch, TI) were the highest with the chemical fertilizer treatment. Total number of produced branch per fruiting mother branch and number of small and weak branches per fruiting mother branch were highest on the control and liquid fertilizer treatment; however, all treatments produced similar numbers. The chemical and organic fertilizer treatments produced a high number of fruiting branches per fruiting mother branch, while organic and liquid fertilizer treatments produced a high number of burr per fruiting branch. The rate of commercializing on the basis of nut weight and quantity was higher on control (87.5%) than chemical fertilizer treatment (84.6%); however, the rate was even lower on liquid fertilizer treatment (84.3%) and organic fertilizer treatment (82.7%). The liquid fertilizer treatment showed the highest average of nut weight, while chemical fertilizer treatment showed the highest average number of fruiting burr. There was no significant difference in average number of normal nuts per burr among treatments. The yield per tree was high on chemical (8.2 kg) and liquid (8.0 kg) fertilizer treatments, but there was no significant difference among treatments. In the rate of nut grade on the basis of nut weight and quantity, the liquid fertilizer treatment, 43.5% and 34.3% more than large nut respectively, produced higher value chestnuts compared to other treatments.

Spectral Band Selection for Detecting Fire Blight Disease in Pear Trees by Narrowband Hyperspectral Imagery (초분광 이미지를 이용한 배나무 화상병에 대한 최적 분광 밴드 선정)

  • Kang, Ye-Seong;Park, Jun-Woo;Jang, Si-Hyeong;Song, Hye-Young;Kang, Kyung-Suk;Ryu, Chan-Seok;Kim, Seong-Heon;Jun, Sae-Rom;Kang, Tae-Hwan;Kim, Gul-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.15-33
    • /
    • 2021
  • In this study, the possibility of discriminating Fire blight (FB) infection tested using the hyperspectral imagery. The reflectance of healthy and infected leaves and branches was acquired with 5 nm of full width at high maximum (FWHM) and then it was standardized to 10 nm, 25 nm, 50 nm, and 80 nm of FWHM. The standardized samples were divided into training and test sets at ratios of 7:3, 5:5 and 3:7 to find the optimal bands of FWHM by the decision tree analysis. Classification accuracy was evaluated using overall accuracy (OA) and kappa coefficient (KC). The hyperspectral reflectance of infected leaves and branches was significantly lower than those of healthy green, red-edge (RE) and near infrared (NIR) regions. The bands selected for the first node were generally 750 and 800 nm; these were used to identify the infection of leaves and branches, respectively. The accuracy of the classifier was higher in the 7:3 ratio. Four bands with 50 nm of FWHM (450, 650, 750, and 950 nm) might be reasonable because the difference in the recalculated accuracy between 8 bands with 10 nm of FWHM (440, 580, 640, 660, 680, 710, 730, and 740 nm) and 4 bands was only 1.8% for OA and 4.1% for KC, respectively. Finally, adding two bands (550 nm and 800 nm with 25 nm of FWHM) in four bands with 50 nm of FWHM have been proposed to improve the usability of multispectral image sensors with performing various roles in agriculture as well as detecting FB with other combinations of spectral bands.

Numerical analysis of morphological changes by opening gates of Sejong Weir (보 개방에 의한 하도의 지형변화 과정 수치모의 분석(세종보를 중심으로))

  • Jang, Chang-Lae;Baek, Tae Hyo;Kang, Taeun;Ock, Giyoung
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.629-641
    • /
    • 2021
  • In this study, a two-dimensional numerical model (Nays2DH) was applied to analyze the process of morphological changes in the river channel bed depending on the changes in the amount of flooding after fully opening the Sejong weir, which was constructed upstream of the Geum River. For this, numerical simulations were performed by assuming the flow conditions, such as a non-uniform flow (NF), unsteady flows (single flood event, SF), and a continuous flood event (CF). Here, in the cases of the SF and CF, the normalized hydrograph was calculated from real flood events, and then the hydrograph was reconfigured by the peak flow discharge according to the scenario, and then it was employed as the flow discharge at the upstream boundary condition. In this study, to quantitatively evaluate the morphological changes, we analyzed the time changes in the bed deformation the bed relief index (BRI), and we compared the aerial photographs of the study area and the numerical simulation results. As simulation results of the NF, when the steady flow discharge increases, the ratio of lower width to depth decreases and the speed of bar migration increases. The BRI initially increases, but the amount of change decreased with time. In addition, when the steady flow discharge increases, the BRI increased. In the case of SF, the speed of bar migration decreased with the change of the flow discharge. In terms of the morphological response to the peak flood discharge, the time lag also indicated. In other words, in the SF, the change of channel bed indicates a phase lag with respect to the hydraulic condition. In the result of numerical simulation of CF, the speed of bar migration depending on the peak flood discharges decreased exponentially despite the repeated flood occurrences. In addition, as in the result of SF, the phase lag indicated, and the speed of bar migration decreased exponentially. The BRI increased with time changes, but the rate of increase in the BRI was modest despite the continuous peak flooding. Through this study, the morphological changes based on the hydrological characteristics of the river were analyzed numerically, and the methodology suggested that a quantitative prediction for the river bed change according to the flow characteristic can be applied to the field.

A Study on Evaluation Method for Structural Suitability of Constructed Wetlands in Dam Reservoirs as an Ecological Water Purification System (생태적 수질정화시설로서 댐 저수지 인공습지의 구조 적정성 평가방안)

  • Bahn, Gwon-Soo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.2
    • /
    • pp.23-40
    • /
    • 2022
  • Many constructed wetlands have been installed in dam reservoirs nationwide for ecological purification of watershed pollutants, but aging and reduced efficiency are becoming issues. To improve the management of constructed wetlands, an objective evaluation of structural suitability is required. This study evaluated 39 constructed wetlands of 15 dams. First, through fogus group interview(FGI), survey analysis, and analytic hierarchy process(AHP), eight evaluation items in the physical and vegetative aspects were selected and the evaluation criteria applied with weights were prepared. Second, as a result of the structural suitability evaluation, the average score of the overall constructed wetlands was 80.8, with 10 sites rated as 'good grade(91~100)', 22 sites rated as 'normal grade(71~90)' and 7 sites rated as 'poor grade(70 or less)'. The average score of physical structure evaluation was 52.6, with 14 sites rated as 'good', 21 sites as 'normal' and 4 sites as 'poor'. The suitability of location was good level in most constructed wetlands, but the water supply system, depth of water, ratio of length-to-width, and slope of flow channel were evaluated as 'normal' or less in constructed wetlands of 50% or more. Therefore, it was found that overall improvement was necessary for stable flow supply and flow improvement in the constructed wetland. The average score of vegetative structure evaluation was 28.2, and about 84% of them were identified as 'normal' or lower. As a result of analyzing the Spearman's correlation coefficient between the physical structure evaluation score and the vegetation structure evaluation score, there was a significant correlation(r = 0.728, p < 0.001), and it was found that each evaluation factor also influences each other. As a result of the case review of 6 constructed wetlands, the appropriateness of the evaluation results was confirmed, and it was found that the location, flow rate supply, and type of wetland had a great influence on the efficiency and operation of the wetland. Through this study, it will be possible to derive structural weaknesses of constructed wetlands in dam reservoirs as a nature-based solution, to prepare types and practical alternatives for improved management of each constructed wetland in the future, and to contribute to enhancing various environmental functions.

Reliability Analysis on Stability of Armor Units for Foundation Mound of Composite Breakwaters (혼성제 기초 마운드의 피복재 안정성에 대한 신뢰성 해석)

  • Cheol-Eung Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.2
    • /
    • pp.23-32
    • /
    • 2023
  • Probabilistic and deterministic analyses are implemented for the armor units of rubble foundation mound of composite breakwaters which is needed to protect the upright section against the scour of foundation mounds. By a little modification and incorporation of the previous empirical formulas that has commonly been applied to design the armor units of foundation mound, a new type formula of stability number has been suggested which is capable of taking into account slopes of foundation mounds, damage ratios of armor units, and incident wave numbers. The new proposed formula becomes mathematically identical with the previous empirical formula under the same conditions used in the developing process. Deterministic design have first been carried out to evaluate the minimum weights of armor units for several conditions associated with a typical section of composite breakwater. When the slopes of foundation mound become steepening and the incident wave numbers are increasing, the bigger armor units more than those from the previous empirical formula should be required. The opposite trends however are shown if the damage ratios is much more allowed. Meanwhile, the reliability analysis, which is one of probabilistic models, has been performed in order to quantitatively verify how the armor unit resulted from the deterministic design is stable. It has been confirmed that 1.2% of annual encounter probability of failure has been evaluated under the condition of 1% damage ratio of armor units for the design wave of 50 years return period. By additionally calculating the influence factors of the related random variables on the failure probability due to those uncertainties, it has been found that Hudson's stability coefficient, significant wave height, and water depth above foundation mound have sequentially been given the impacts on failure regardless of the incident wave angles. Finally, sensitivity analysis has been interpreted with respect to the variations of random variables which are implicitly involved in the formula of stability number for armor units of foundation mound. Then, the probability of failure have been rapidly decreased as the water depth above foundation mound are deepening. However, it has been shown that the probability of failure have been increased according as the berm width of foundation mound are widening and wave periods become shortening.