• Title/Summary/Keyword: Widmanstatten structure

Search Result 5, Processing Time 0.019 seconds

Microstructural Characteristics of Zircaloy-4 Nuclear Fuel Cladding Welds by Resistance Upset Welding Processes (저항 업셋 용접방식에 따른 Zircaloy-4 핵연료 피복재 용접부의 미세조직 특성)

  • 고진현;김상호;박춘호;김수성
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.98-104
    • /
    • 2002
  • A study on microstructures of welds for Zircaloy-4 sheath end closure by the resistance upset welding methods was carried out. Two upset welding process variations such as magnetic farce and multi-impulse resistance welding were used. Grain size and microhardness across welds were analysed in terms of welding parameters. Magnetic farce resistance weld with one cycle of unbalanced mode has smaller upset length and $\alpha-grain$ size in heat affected zone than those of multi-impulse resistance weld because of lower heat input and shorter welding time. Heat affected zone formed by two upset resistance welding variations revealed fine Widmanstatten structure or martensitic ${\alpha}'$ structure due to the high heating rate and foster cooling rate. Magnetic force resistance welds showed recrystallized grains before grain growth, whereas multi-impulse resistance welds showed full grain growth.

Microstructures and Tensile Characteristics of Ti-6AI-4V Alloy by Double Solution Treatment (2중 용체화처리에 따른 Ti-6AI-4V합금의 미세조직과 인장특성)

  • Choe, Hyeong-Jin;Lee, Jun-Hui
    • Korean Journal of Materials Research
    • /
    • v.4 no.6
    • /
    • pp.626-637
    • /
    • 1994
  • The relationship between microstructures and tensile properties depending on various solution treatment temperature and cooling rate of Ti-6A1-4V alloy have been investigated. The complex and random edge shaped $\alpha$ phases were formed after the 1st solution treatment at $\beta$ region and the 2nd solution treatment at $900^{\circ}C$, which was followed by furnace cooled. When the specimen was subjected to the 2nd solution treated at $950^{\circ}C$, and furnace cooled, $\alpha$ phase changed its morphology to equiaxed structure. The aspect ratio showing the appreciation basis of microstructual refinement decreases with the temperature of 1st and 2nd solution treatment. The slightly decrease in strength were observed in the Widmanstltten structures than in the bimodal structures. Also, ductility of the Widmanstatten structures was considerable lower than that of bimodal structures. The tensile-fractured surface of the Widmanstatten structures appears to be quasi-cleavage and dimple fracture, while that of the bimodal structures was the type of ductile fracture. The tensile fracture surface of the bimodal structures can easily be separated into cental crack areas lying generally perpendicular to the tensile axis and shear lip areas lying at angles of high shear(around 45 deg.) to the tensile axis.

  • PDF

A study on microstructure, corrosion characteries and hardness of pure Ti according to cooling methods (생체용 순수 Ti 주조체의 냉각방법에 따른 주조조직과 부식특성 및 경도에 관한 연구)

  • Kim, Jae-Doo
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.65-73
    • /
    • 2001
  • The purpose of this study was to investigate the microstucture and hardness, corrosion of pure Ti alloy, which is widely used as partial denture frame work these days, depending on the cooling method, followed by casting. The first group was bench cooling at room temperature($18^{\circ}C$), the second group was slowly cooled in the furnace from $700^{\circ}C$ to room temperature, and third. rapidly cooled in $0^{\circ}C$ water. The microstructure of each specimen observed by means of photomicrograph taken by electron microscope, in add to the physical characteristics of each specimen were obtained using the rockwell Hardnest Number. the characteristics of corrosion. The results were obtained as follows: 1. From Potentiodynamic plot. we conclude furnace-cooled specimen had the best stabiltity of passive film and that air-cooled specimen showed similar characteristics. The density of electric current of quenched specimen was the highest, which formed kind of unstable passive film. 2. Specimen cooled at room temperature (air cooling) had the highest value of hardness of 81.26HRB, specimen cooled at ice-water, $0^{\circ}C$, had the value of 78.42HRB, and specimen furnace-cooled at $700^{\circ}C$ had lowest value of 77.1HRB. 3. Quenching treated micro-structure formed martensite structure by and large. In case of air cooling, we could see $\alpha$-structure widmanstatten formed overall. In furnace cooling, widmanstatten structure and various shape $\alpha$-structures forming colony with direction were detected.

  • PDF

Influence of Cooling Rate and Alloy Composition on The Microstructural Evolution of Al-Ag Eutectic System ($Al-Ag_2Al$ 공정계 합금의 조성 및 냉각 속도에 따른 미세조직 고찰)

  • Sohn, Sung-Woo;Park, Jin-Man;Kim, Tae-Eung;Lim, Ka-Ram;Kim, Won-Tae;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.29 no.2
    • /
    • pp.64-69
    • /
    • 2009
  • In the present study the effect of cooling rate during solidification on the microstructural characteristics of Al-xAg (x = 31, 33, 35 at.%) in-situ binary eutectic composites has been investigated. To provide a wide range of cooling rate three different casting techniques, i.e. conventional casting, injection casting, and melt spinning have been used. The observed microstructure is very much dependent on the cooling rate. The fcc ${\alpha}$-Al and hcp $Ag_2Al$ phases exhibits an orientation of (111)Al//(0001)$Ag_2Al$, [1-10]Al//[11- 20]$Ag_2Al$. The microstructure of the melt-spun samples contains Widmanstatten structure resulting from solid-state transformation and nano scale two-phase structure resulting from solid-state phase separation. The microstructure of injection-cast samples contains eutectic structure and solid state phase-separated structure. On the other hand, conventional-cast samples exhibit a microstructure consisted of plate-type eutectic structure.

Microstructure investigation and component analysis of iron weapons found at Hadong-gun, Kyungnam Province (경남 하동군 발견 철제무구류의 금속조직 조사 및 성분분석)

  • Yu, Jae-Eun;Go, Hyeoung-Sun;Hwong, Jin-Ju
    • 보존과학연구
    • /
    • s.21
    • /
    • pp.177-206
    • /
    • 2000
  • In the study of iron artifacts, microstructure investigation is an indispensable step to find out the manufacturing method and skill. The iron weapons that we have excavated and investigated at the ruins of Gohyun Castle site, Hadong-gun, Kyungnam Province are traced to the era of Choson Dynasty. By sampling specimens of some artifacts, we have made microstructure investigation and component analysis of them. For microstructure investigation we used metallographic microscopes, and for component analysis we used the methods of C/S analysis and Inductively coupled plasma emission spectrometry (ICP) analysis which is designed to verify components and contenets of a very small amount elememt. Microstructure of the artifacts is mainly divided into three parts. Inner part is Widmanstatten, a typical overheated structure, upon which we can see another part with fine grains and with extremely small quantities of carbon. And on the surface, there is a carbonized part. When the shape is formed through forging process at a high temperature the carbon content of the surface is getting down and the grains come to be finer. Next, carbonizing process is to be done for hardening the surface, which is followed by cooling process. Cooling rates seem to be different from artifacts to artifacts. All artifacts have clearly distinguishable grain boundaries in their unique structure. Since this kind of structure is rarely found, it seems to offer a clue to find out the manufacturing method. The outcome of component analysis is almost the same with that of microstructure investigation. As is demonstrated by C/S analysis, carbon content is 0.39-1.24% and sulfur is contained 0.0005-0.010%.

  • PDF