• Title/Summary/Keyword: Wideband antenna

Search Result 415, Processing Time 0.958 seconds

An Ultra-Wideband Conformal Meandered Loop Antenna for Wireless Capsule Endoscopy

  • Soyeon Kim;Hyunchol Shin
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • This work presents an ultra-wideband conformal meandered loop antenna for wireless capsule endoscopy applications. The proposed antenna surrounds the outer wall of a capsule, so that the inner space can be used by a battery and other electrical and optical components. Fabricated on a flexible substrate, the antenna has a diameter of 10 mm and a height of 14 mm when wrapped around a cylindrical capsule. The antenna achieves an ultra-wide impedance bandwidth of 200 MHz-2.05 GHz (164% of the fractional bandwidth), which provides sufficient coverage for the medical implant communication service, MedRadio, and industrial-scientific-medical (ISM) bands. This antenna also ensures robustness to the detuning effect, which could be caused by the inner components of the capsule and the outer environment variations. The omnidirectional radiation pattern of the antenna is verified by simulations and measurements, and its maximum gain is -31.5 dBi. The fabricated antenna is successfully tested in an over-the-air wireless communication link, proving that the antenna can be instrumental in wireless capsule endoscopy applications.

Design ofa wideband HTS antenna

  • Hwang, Jong-Sun;Park, Sung-Jin;Han, Byoung-Sung;Chung, Dong-Chul
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.197-200
    • /
    • 2000
  • In this paper, we present a novel methodology for a wideband HTS antenna of finite length placed on a dielectric substrate. A methodology used in this work is based on a moment-method techniques with Green function singularity when the field point is in the source triangle. The designed resonance frequency of our HTS antenna is 11.85 GHz. The return loss is -26 dB. The bandwidth obtained is a significant 10.6 %. Experimental measurements for a HTS antenna designed in X-band are shown to agree well with the simulated prediction.

  • PDF

Coaxial Feed Wideband CP antenna for RFID Applications

  • Park, Kyu-Dae;Kim, Hwan-Yong
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.391-395
    • /
    • 2008
  • Wideband terminal and base station is required to serve not only existing 1st and 2nd generation mobile communication systems but also 3rd generation systems. In this paper, we present a feasibility study on coaxial feed compact wideband antenna for UHF RFID reader application. The original antenna was designed for partial discharge detection sensor in high voltage diagnostic system. However, we modified the original prototype to achieve shifted down resonant frequency for wideband wireless communication applications. The experimental result shows good return loss characteristics and radiation patterns except for the total gain at each resonant frequency. The maximum measured gain was 2.45 dBi$\sim$3.18 dBi at 910MHz.

Single Feed Compact Wideband Antenna for Wireless Communication Applications

  • Park, Noh-Joon;Kang, Young-Jin
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.164-168
    • /
    • 2008
  • Wideband terminal and base station is required to serve not only existing 1st and 2nd generation mobile communication systems but also 3rd generation systems. In this paper, we presents a feasibility study on single feed compact wideband antenna for wireless communication applications including GSM (890-960 MHz), GPS (1575 MHz), DCS (1710-1880 MHz), PCS (1880-1990 MHz), UMTS (1900-2200 MHz), ISM (2400-2480 MHz), IMT2000 and satellite DMB bands. The original antenna was designed for partial discharge detection sensor in high voltage diagnostic system. However, we modified the original prototype to achieve shifted down resonant frequency for wideband wireless communication applications. The experimental result shows good return loss characteristics and radiation patterns except for the total gain at each resonant frequency. The maximum measured gain was 2.45 dBi${\sim}$3.18 dBi at 1710 MHz${\sim}$1880 MHz.

A 28-GHz Wideband 2×2 U-Slot Patch Array Antenna

  • Yoon, Nanae;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.133-137
    • /
    • 2017
  • In this study, a 28-GHz U-slot array antenna for a wideband communication system is proposed. The U-slot patch antenna structure consists of a patch, two U-shaped slot, and a ground plane. With the additional U-slot, the proposed antenna has around 10% of bandwidth at -10 dB. To increase gain, the U-slot antenna is arrayed to $2{\times}2$. The proposed antenna is designed and fabricated. The $2{\times}2$ array antenna volume is $41.3mm{\times}46mm{\times}0.508mm$. The proposed antenna was measured and compared with the simulation results to prove the reliability of the design. The bandwidth and gain of the measurement results are 3.35 GHz and 13 dBi, respectively and the operating frequency is around 28 GHz.

Design of Super Wideband Dipole Antenna with 15:1 Impedance Bandwidth Ratio (15:1 임피던스 대역폭 비를 가지는 초광대역 다이폴 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.67-68
    • /
    • 2013
  • In this paper, a super wideband printed dipole antenna operating in the band of 1-15 GHz is studied. A semi-circular-shaped dipole element is used to obtain a super wideband characteristic. Optimal design parameters are obtained by analyzing the effects of the gap between the two arms of the semi-circular-shaped dipole and the radius of the semi-circle on the input reflection coefficient and gain characteristics. The optimized printed semi-circular-shaped dipole antenna is fabricated on an FR4 substrate with a dimension of $100mm{\times}100mm$. Experimental results show that the antenna has a desired super wideband characteristic with a frequency band of 1-15 GHz (bandwidth ration 15:1, 175%) for a VSWR < 2.

  • PDF

Wideband Double-Radiator Circular Disc Annular Monopole Antenna

  • Afoakwa, Samuel;Diawuo, Henry Abu;Jung, Young-Bae
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.4
    • /
    • pp.252-257
    • /
    • 2018
  • A wideband double radiator circular disc annular monopole antenna is proposed is this work. The radiators are etched on the surfaces of two Taconic TLY-5 substrates with a circular hole cut out of each of the radiators initially at the centers of the radiators with subsequent downward displacement of the holes. The antenna is designed with a two-step feeding transformer system for impedance matching between the input power source supplied by a $50-{\Omega}$ SMA connector and the monopole radiators. The transformer system improves the bandwidth performance at higher frequencies. The proposed antenna achieves a wideband having the capability of working between 0.645 and 18.775 GHz, corresponding to a -10 dB bandwidth of 186.7% with gain ranging from 0.95 to 8.26 dBi. In comparison to other metal disc planar monopole antennas, the proposed antenna has a small total size width due to the size of the ground plane, which has a diameter 100 mm. The frequency range of the antenna provides applications in global positioning systems, mobile communications, ultra-wideband short distance communications, and wireless computer networks.

Characteristics of Wideband Patch Antenna with an L-Strip-Fed Structure (L-스트립 급전구조를 갖는 적층 패치 안테나의 특성)

  • 전주성;김장욱;김종규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.4
    • /
    • pp.366-372
    • /
    • 2002
  • A wideband stacked patch antenna fed by an L-strip feeder is studied experimentally. The objective of this paper is to design small wideband antenna for PCS and IMT-2000 service. Experimental results confirm that an impedance bandwidth(VSWR$\leq$2) of 704.7 MHz(35.95 %) is achieved at PCS and IMT-2000 frequency band. The studied antenna can be designed easily for extension of away because it has simple structure.

Self-Complementary Spiral Antenna Design Using a Ultra-Wideband Microstrip-to-CPS Balun (초광대역 마이크로스트립-CPS 발룬을 이용한 Self-Complementary 스파이럴 안테나 설계)

  • Woo, Dong-Sik;Kim, Young-Gon;Cho, Young-Ki;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.208-214
    • /
    • 2009
  • A design and its experimental result of a wideband self-complementary spiral antenna for UWB USPR(Ultrashort-Pulse Radar) system applications is presented. By utilizing the planar-type ultra-wideband microstrip-to-CPS balun, ultra-wideband characteristics of the inherent spiral antenna are retrieved. Also, the design procedure of the spiral antenna is simplified by performing simple impedance matching between separately designed balun and antenna. The proposed spiral antenna is equiangular self-complementary spiral antenna. The implemented antenna demonstrates widebaad performance for frequency ranges from 2.9 to 12 GHz with the relatively flat antenna gain of 2.7 to 5.3 dB and broad beamwidth of more than $70^{\circ}$. From these result, the possibility of a spiral antenna using a ultra-wideband microstrip-CPS balun is verified.

A Study on Ultra-Wideband Patch Antenna with Modified Barrel Shape (변형된 항아리형 초 광대역 패치안테나의 설계에 관한 연구)

  • Kim, Sun-Hyo;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.263-270
    • /
    • 2016
  • This paper implemented an ultra-wideband(: UWB) antenna by using a modified barrel-shaped patch antenna. The designed UWB patch antenna was optimized to match UWB technical specifications by considering the sizes of barrel circle and oval(notch) which is distance between the patch and contact surface and designed antenna was implemented by $10mm(R1){\times}21.8mm$ size. Optimal values on the basis of simulated reflective loss results, the surface current distribution of designed patch antenna was analyzed in order to check operation mode of antenna and wideband mechanism. Experimental results of implemented UWB antenna, Return loss of UWB antenna the voltage standing wave ratio was 2 or less in the 1.775-13.075 GHz band, VSWR in 2 or less. And the maximum gain of approx. 1-3 dBi was found in 3.1-10.6 GHz. This result satisfied the characteristics of ultra-wideband and the proposed antenna will be applicable to an ultra-wideband system.