Browse > Article
http://dx.doi.org/10.5515/JKIEES.2017.17.3.133

A 28-GHz Wideband 2×2 U-Slot Patch Array Antenna  

Yoon, Nanae (Department of Electronic Engineering, Soongsil University)
Seo, Chulhun (Department of Electronic Engineering, Soongsil University)
Publication Information
Abstract
In this study, a 28-GHz U-slot array antenna for a wideband communication system is proposed. The U-slot patch antenna structure consists of a patch, two U-shaped slot, and a ground plane. With the additional U-slot, the proposed antenna has around 10% of bandwidth at -10 dB. To increase gain, the U-slot antenna is arrayed to $2{\times}2$. The proposed antenna is designed and fabricated. The $2{\times}2$ array antenna volume is $41.3mm{\times}46mm{\times}0.508mm$. The proposed antenna was measured and compared with the simulation results to prove the reliability of the design. The bandwidth and gain of the measurement results are 3.35 GHz and 13 dBi, respectively and the operating frequency is around 28 GHz.
Keywords
28 GHz; 5G; Antenna; U-Slot; Wideband;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azr, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Guterrez, "Millimeter wave mobile communications for 5G cellular: it will work!," IEEE Access, vol. 1, pp. 335-349, 2013.   DOI
2 N. Ojaroudiparchin, M. Shen, S. Zhang, and G. F. Pedersen, "A switchable 3D-coverage phased array antenna package for 5G mobile terminals," IEEE Antenna and Wireless Propagation Letters, vol. 15, pp. 1747-1750, 2016.   DOI
3 A. I. Sulyman, A. T. Nassar, M. K. Samimi, G. R. Mac-Cartney, T. S. Pappaport, and A. Alsanie, "Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands," IEEE Communications Magazine, vol. 52, no. 9, pp.78-86, 2014.   DOI
4 J. A. Ansari and R. B. Ram, "Broadband stacked U-slot microstrip patch antenna," Progress in Electromagnetics Research Letters, vol. 4, pp. 17-24, 2008.   DOI
5 S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, "Wideband aperture coupled stacked patch antenna using thick substrates," Electronics Letters, vol. 32, no. 21, pp. 1941-1942, 1996.   DOI
6 A. Rani and A. K. Gautam, "Improvement in gain and bandwidth of rectangular and U slot loaded patch," International Journal of Computer Science Issues, vol. 8, pp. 283-288, 2011.
7 D. Uzer, S. S. Gultekin, and O. Dundar, "Estimation and design of U-slot physical patch parameters with artificial neural networks," in Proceedings of Progress in Electromagnetics Research Symposium, Kuala Lumpur, Malaysia, 2012, pp. 27-30.
8 C. A. Balanis, Antenna Theory: Analysis and Design. Hoboken, NJ: John Wiley & Sons Inc., 2005.
9 K. F. Lee and K. M. Luk, Microstip Patch Antennas. London: Imperial College Press, 2010.
10 S. Weigand, G. H. Huff, K. H. Pan, and J. T. Bernhard, "Analysis and design of broad-band single-layer rectangular U-slot microstip patch antennas," IEEE Transactions on Antennas and Propagation, vol. 51, no. 3, pp. 457-468, 2003.   DOI
11 J. I. Lee, B. M. Lee, and Y. J. Yoon, "CPW feed wideband U-slot microstrip antenna," Journal of the Korea Electromagnetics Engineering Society, vol. 2, no. 1, pp. 11-15, 2002.
12 R. A. Bhatti, B. Y. Park, Y. T. Im, and S. O. Park, "Design of a planar slotted waveguide array antenna for X-band radar applications," Journal of the Korea Electromagnetics Engineering Society, vol. 11, no. 2, pp. 97-104,2011.   DOI
13 H. Kaouach, A. Kabashi, and M. T. Simsim, "Bandpass antenna-filter-antenna arrays for millimeter-wave filtering applications," Journal of Electromagnetic Engineering and Science, vol. 15, no. 4, pp. 206-212, 2015.   DOI
14 G. Byun, J. C. Hyun, S. M. Seo, and H. Choo, "Optimum array configuration to improve null steering time for mobile CRPA systems," Journal of Electromagnetic Engineering and Science, vol. 16, no. 2, pp. 74-79, 2016.   DOI