• 제목/요약/키워드: Wide-gap materials

검색결과 144건 처리시간 0.025초

Chiral liquid crystals in photonic device applications

  • Gleeson, Helen F.;Yoon, Hyung-Guen;Roberts, Nicholas W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.105-108
    • /
    • 2007
  • Chiral liquid crystals exhibit band-gap structures responsive to electrical and optical fields, providing wide-ranging opportunities for photonics applications. We discuss three aspects of this technology: optics of chiral nematic devices and removal of pitch jumps; optical switching of chiral nematic materials; and using novel phases in photonic devices.

  • PDF

이온 주입법을 이용한 ZnO 박막의 As 도핑 (Arsenic Doping of ZnO Thin Films by Ion Implantation)

  • 최진석;안성진
    • 한국재료학회지
    • /
    • 제26권6호
    • /
    • pp.347-352
    • /
    • 2016
  • ZnO with wurtzite structure has a wide band gap of 3.37 eV. Because ZnO has a direct band gap and a large exciton binding energy, it has higher optical efficiency and thermal stability than the GaN material of blue light emitting devices. To fabricate ZnO devices with optical and thermal advantages, n-type and p-type doping are needed. Many research groups have devoted themselves to fabricating stable p-type ZnO. In this study, $As^+$ ion was implanted using an ion implanter to fabricate p-type ZnO. After the ion implant, rapid thermal annealing (RTA) was conducted to activate the arsenic dopants. First, the structural and optical properties of the ZnO thin films were investigated for as-grown, as-implanted, and annealed ZnO using FE-SEM, XRD, and PL, respectively. Then, the structural, optical, and electrical properties of the ZnO thin films, depending on the As ion dose variation and the RTA temperatures, were analyzed using the same methods. In our experiment, p-type ZnO thin films with a hole concentration of $1.263{\times}10^{18}cm^{-3}$ were obtained when the dose of $5{\times}10^{14}$ As $ions/cm^2$ was implanted and the RTA was conducted at $850^{\circ}C$ for 1 min.

SiCqksehcp 기술현황과 전망 (Status of Silicon Carbide as a Semiconductor Device)

  • 김은동
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제14권12호
    • /
    • pp.11-14
    • /
    • 2001
  • 반도체 동작시에 파워 손실을 최소화하는 것은 2000년대의 에너지, 산업전자, 정보통신 산업분야에서의 가장 주요한 요구 사항중의 하나이다. 실리콘계 반도체 소자들은 완전히 새로운 구동기구의 소자가 개발되지 않는 한, 실리콘 재료의 낮은 열전도율이나 낮은 절연파괴전계와 같은 물리적 특성한계 때문에 이러한 요구를 만족시키는 것이 불가능한 실정이다. 따라서 21세기를 위한 대안으로 고열전도율의 WBG(Wide Band-Gap) 물질 그 중에서도 탄화규소(SiC) 반도체가 제시되고 있다. SiC 반도체는 실리콘에 비하여 밴드 갭(band gap: E$_{g}$)이 높을 뿐만이 아니라 절연파괴강도(E$_{B}$)가 한 자릿수 이상 그리고 전자의 포화 drift 속도, V$_{s}$ 및 열전도도 k가 3배 가량 크다. 따라서 SiC는 고온 동작 내지는 고내압, 대전류, 저손실 반도체를 제작하는데 아주 유리하다. 본고에서는 응용성이 넓고, 단결정 제조가 비교적 용이한 SiC 반도체의 기술현황에 대하여 살펴보고자 한다.

  • PDF

Potential Wide-gap Materials as a Top Cell for Multi-junction c-Si Based Solar Cells: A Short Review

  • Pham, Duy Phong;Lee, Sunhwa;Kim, Sehyeon;Oh, Donghyun;Khokhar, Muhammad Quddamah;Kim, Sangho;Park, Jinjoo;Kim, Youngkuk;Cho, Eun-Chel;Cho, Young-Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제7권3호
    • /
    • pp.76-84
    • /
    • 2019
  • Silicon heterojunction solar cells (SHJ) have dominated the photovoltaic market up till now but their conversion performance is practically limited to around 26% compared with the theoretical efficiency limit of 29.4%. A silicon based multi-junction devices are expected to overcome this limitation. In this report, we briefly review the state-of-art characteristic of wide-gap materials which has played a role as top sub-cells in silicon based multi-junction solar cells. In addition, we indicate significantly practical challenges and key issues of these multi-junction combination. Finally, we focus to some characteristics of III-V/c-Si tandem configuration which are reaching highly record performance in multi-junction silicon solar cells.

코팅 공정에서 공기를 고려한 코터형상 및 운전조건에 따른 코팅현상 해석 (Computer Simulation of Coating Behavior Including Air for Various Coater Geometries and Operational Conditions)

  • 김혜연;류민영;최종근
    • 소성∙가공
    • /
    • 제18권2호
    • /
    • pp.156-159
    • /
    • 2009
  • Slot coating has been wide spread in photo-resist coating on the glass for liquid crystal display. Die in slot coater consists of manifold and land. Material comes in inlet of the die and flow into the manifold and then flow out through the land. The coating thickness variations along the die length depend upon inside of die design such as manifold and die land. However the coating thickness variations along the moving direction(coating direction) of the coater depend upon the operational conditions of coater as well as die lip design. The coating behaviors including atmospheric air have been investigated in this study. Die geometries considered in this study were nozzle gap and length of the die lip. Coating gap and coating speed were the variables fur coating operational conditions. When the nozzle gap and length of die lip increased climbing effect of PR on the downstream die lip was reduced. Subsequently uniformity of coating thickness improved. Uniformity of coating thickness also enhanced as coating gap and coater speed increased. The uniformity of coating gap was related to the velocity vector distributions on the coating surface.

Bulk Heterojunction Organic Photovoltaics- Nano Morphology Control and Interfacial Layers

  • 김경곤
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.59.2-59.2
    • /
    • 2012
  • Polymer solar cells utilize bulk heterojunction (BHJ) type photo-active layer in which the electron donating polymer and electron accepting $C_{60}$ derivatives are blended. We found there is significant charge recombination at the interface between the BHJ active layer and electrode. The charge recombination at the interface was effectively reduced by inserting wide band gap inorganic interfacial layer, which resulted in efficiency and stability enhancement of BHJ polymer solar cell.

  • PDF

Fabrication of wide-bandgap β-Cu(In,Ga)3Se5 thin films and their application to solar cells

  • Kim, Ji Hye;Shin, Young Min;Kim, Seung Tae;Kwon, HyukSang;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.38-43
    • /
    • 2013
  • $Cu(In,Ga)_3Se_5$ is a candidate material for the top cell of $Cu(In,Ga)Se_2$ tandem cells. This phase is often found at the surface of the $Cu(In,Ga)Se_2$ film during $Cu(In,Ga)Se_2$ cell fabrication, and plays a positive role in $Cu(In,Ga)Se_2$ cell performance. However, the exact properties of the $Cu(In,Ga)_3Se_5$ film have not been extensively studied yet. In this work, $Cu(In,Ga)_3Se_5$ films were fabricated on Mo-coated soda-lime glass substrates by a three-stage co-evaporation process. The Cu content in the film was controlled by varying the deposition time of each stage. X-ray diffraction and Raman spectroscopy analyses showed that, even though the stoichiometric Cu/(In+Ga) ratio is 0.25, $Cu(In,Ga)_3Se_5$ is easily formed in a wide range of Cu content as long as the Cu/(In+Ga) ratio is held below 0.5. The optical band gap of $Cu_{0.3}(In_{0.65}Ga_{0.35})_3Se_5$ composition was found to be 1.35eV. As the Cu/(In+Ga) ratio was decreased further below 0.5, the grain size became smaller and the band gap increased. Unlike the $Cu(In,Ga)Se_2$ solar cell, an external supply of Na with $Na_2S$ deposition further increased the cell efficiency of the $Cu(In,Ga)_3Se_5$ solar cell, indicating that more Na is necessary, in addition to the Na supply from the soda lime glass, to suppress deep level defects in the $Cu(In,Ga)_3Se_5$ film. The cell efficiency of $CdS/Cu(In,Ga)_3Se_5$ was improved from 8.8 to 11.2% by incorporating Na with $Na_2S$ deposition on the CIGS film. The fill factor was significantly improved by the Na incorporation, due to a decrease of deep-level defects.

Application of Conformal Mapping in Analysis the Parallel Stripline Resonator

  • Tran, T.H.;You, S.J.;Kim, J.H.;Seong, D.J.;Jeong, J.R.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.180-180
    • /
    • 2012
  • A microplasma system source based on microwave parallel stripline resonator (MPSR) was developed for the generation of microplasmas in a wide range of pressure from some torr to 760 torr. This source was operated at its resonance frequency that much depends upon not only its discharge gap size but also operated pressure. This paper applied a simple circuit model to analyze the effects of discharge gap size and pressure to resonance frequency and impedance of MPSR in the cases with and without plasma exist inside the discharge gap. In the process of calculating, the conformal mapping method was used to estimate the capacitance of the MPSR. The calculating results by using circuit model agree well with the simulation results that using commercial CST microwave studio software.

  • PDF

Ultra Wide Band-gap 인광체를 이용한 백색 OLED의 발광 특성 (Emission Characteristics of White Organic Light-Emitting Diodes Using Ultra Wide Band-gap Phosphorescent Material)

  • 천현동;나현석;추동철;강유석;양재웅;주성후
    • 한국전기전자재료학회논문지
    • /
    • 제25권11호
    • /
    • pp.910-915
    • /
    • 2012
  • We studied the emission characteristics of white phosphorescent organic light-emitting diodes (PHOLEDs), which were fabricated using a two-wavelength method. The best blue emitting OLED and red emitting OLED characteristics were obtained at a concentration of 12 vol.% FIrpic and 1 vol.% $Bt_2Ir$(acac) in UGH3, respectively. And the optimum thickness of the total emitting layer was 25 nm. To optimize emission characteristics of white PHOLEDs, white PHOLEDs with red/blue/red, blue/red, red/blue and co-doping emitting layer structures were fabricated using a host-dopant system. In case of white PHOLEDs with co-doping structure, the best efficiency was obtained at a structure UGH3: 12 vol. % FIrpic: 1 vol.% $Bt_2Ir$(acac) (25 nm). The maximum brightness, current efficiency, power efficiency, external quantum efficiency, and CIE (x, y) coordinate were 13,430 $cd/m^2$, 40.5 cd/A, 25.3 lm/W, 17 % and (0.49, 0.47) at 1,000 $cd/m^2$, respectively.

초.중.고 수학교과서 해석영역의 연계성에 관한 연구 (A Study on Articulation of the Analysis part in Elementary, Middle and High School Mathematics Textbooks)

  • 송순희;김윤영
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제37권1호
    • /
    • pp.87-99
    • /
    • 1998
  • Mathematics education is very important in future because mathematics is the basis of every study, for example, natural and social science, etc. Our nation wide curriculum has been revised six times since 1948. In 1992, the sixth revision was enforced and we are using the revised textbook now. This study aims at helping of continuous investigation for educational curriculum and textbook, and aims at efficient teaching by preventing unnecessary repetition and excessive gap in real field by analyzing the articulation of Analytics part in school textbook from elementary to high school. This thesis consists of the followings. 1.Investigation of the principles and natures of articulation along with curriculum course and notice the articulation based on the analysing tools. 2.Importance of learning functions. 3.To get the propriety, formation of 8 judging group and classification of content materials in function chapters by the judges based on the analyzing tools. 4.Analysis of presentation method and terminologies in the first concepts, suggestion teaching method to reduce gap and help of understanding on first concepts in the study of function. As a result 'development' consists of 55.8% of the total and it is higher than 'duplication' and 'gap'. To be specific in periods, between elementary school and middle school 'development' takes 64.5% and this shows an acceptable articulation in the period. While 39.4% of 'gap' in articulation between middle school and high school looks high compared with 'gap' between the previous periods. The item suggested with the 'gap' is the 'definition of function', 'value of function', 'parallel translation', 'exponential and logarithmic function'. It is observed that these materials is suddenly appeared in high school.

  • PDF