• Title/Summary/Keyword: Wide-Beamwidth

Search Result 26, Processing Time 0.021 seconds

Characteristics Analysis of Wide-Band One-Shot Beam as Variation of Weighting Width (가중치 폭 변화에 따른 광대역 단일빔 특성 분석)

  • 도경철;임근희손경식
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1267-1270
    • /
    • 1998
  • This paper analyzes the characteristics of wide-band one-shot beam formed by using all sensors of array at once, as variation of weighting width. Gaussian function is applied to each sensor as a role of weighting. As the results of the simulation for nested linear array having 17 sensors for each octave, as the width goes wider the directivity index(DI) becomes lower but more even and the variation of beamwidth becomes smaller. It is confirmed, therefore, that weighting width is carefully decided in consideration of DI level, DI stability and the beamwidth.

  • PDF

Microstrip 3-dB Tapered Array Antenna with Wide Detection Range at 35 GHz (광영역 탐지용 35GHz 마이크로스토립 3-dB 테이퍼 배열 안테나)

  • 이영주;정명숙;박위상;최재현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.984-989
    • /
    • 2000
  • A microstrip patch array designed at 35 GHz is described for use in the detection of the position of moving targets. To obtain wide detection range, the array is arranged to give a narrow beamwidth in the elevation plane and a wide beamwidth on the azimuth plane. This can be achieved by aligning the electric field plane of each element to the array axis. Employing a 3 dB-tapered feed network, the array has a side lobe level of less than -20 dB and wider azimuth beam width of 12.8$^{\circ}$ simultaneously.

  • PDF

Wide-Beam Circularly Polarized Crossed Scythe-Shaped Dipoles for Global Navigation Satellite Systems

  • Ta, Son Xuat;Han, Jea Jin;Park, Ikmo;Ziolkowski, Richard W.
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.224-232
    • /
    • 2013
  • This paper describes composite cavity-backed crossed scythe-shaped dipoles with wide-beam circularly polarized (CP) radiation for use in Global Navigation Satellite Systems. Each branch of the dipole arm contains a meander line, with the end shaped like a scythe to achieve a significant reduction in the size of the radiator. For dual-band operation, each dipole arm is divided into two branches of different lengths. The dipoles are crossed through a $90^{\circ}$ phase delay line of a vacant-quarter printed ring to achieve CP radiation. The crossed dipoles are incorporated with a cavity-backed reflector to make the CP radiation unidirectional and to improve the CP radiation beamwidth. The proposed antennas have broad impedance matching and 3-dB axial ratio bandwidths, as well as right-hand CP radiation with a wide-beamwidth and high front-to-back ratio.

Compact Circularly Polarized Composite Cavity-Backed Crossed Dipole for GPS Applications

  • Ta, Son Xuat;Han, Jae Jin;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.44-50
    • /
    • 2013
  • In this paper, we present a circularly polarized (CP) composite cavity-backed crossed dipole antenna for global positioning system (GPS) applications. We produce the CP radiation by crossing two dipoles through a $90^{\circ}$ phase delay line of a vacant-quarter printed ring, which also has a broadband impedance matching characteristic. Two techniques, insertion of meander lines in the dipole arm and arrowhead-shaped trace at its end, are employed to reduce the sizes of the primary radiation element. The compact radiator is backed by a cavity reflector to achieve a wide CP radiation beamwidth. The proposed antenna exhibits a measured bandwidth of 1.450~1.656 GHz for a voltage standing wave ratio (VSWR) < 2 and 1.555~1.605 GHz for AR < 3-dB. At 1.575 GHz, the antenna has a gain of 7 dBic, a frontto-back ratio of 27 dB, AR of 1.18 dB, and 3-dB AR beamwidths of $130^{\circ}$ and $132^{\circ}$ in the x-z and y-z planes, respectively.

Fabrication of 24 GHz 3-Beam Scan Antenna for ACC Applications (자동 주행 차량을 위한 24 GHz 3-Beam Scan 안테나의 제작)

  • 원영진;이영주;공영균;김영수
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.263-267
    • /
    • 2002
  • For driver's convenience, the ACC (Adaptive Cruise Control) requires a system which controls the vehicle to keep the distance among the automobiles constant. This paper describes the microstrip array antennas designed to operate at 24 GHz, and used as a direction indicator of moving vehicles. $8{\times}2$ transmit away antenna with wide beamwidth, $8{\times}4$ receive center array antenna, and two $8{\times}8$ receive array antennas with narrow beamwidth were designed. The measured result shows that the designed array antennas arc suitable fur detecting 3 directions of the vehicle when the scan angle is within the restricted area.

  • PDF

Design of a Nature-inspired Wideband Sprout-leaf Antenna (자연모사 기반 광대역 새싹 안테나 설계)

  • Woo, Dongsik;Bae, Sunghyun
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.536-542
    • /
    • 2020
  • This paper presents a nature-inspired wideband sprout-leaf shaped antenna with end-fire radiation pattern. A sprout-leaf shape angled-radiator was designed for wide beamwidth radiation patterns for motion detection sensors. An extended and truncated ground plane was used as a reflector for end-fire radiation patterns. To feed the balanced radiator, a broadband microstrip (MS) to coplanar stripline (CPS) balun was utilized with excellent amplitude and phase balance. The proposed antenna demonstrates wide frequency bandwidth from 8.5 to 14.5 GHz with wide beamwidth and the radiation efficiency of 90%. The measured gain is from 4 to 5 dBi and front-to-back ratio was 10 to 20 dB. It has been shown that the proposed antenna can be used for imaging sensors, phased array systems, and radars that require a wide bandwidth and a directional radiation pattern.

Photonic-Assisted Reactive-Near-Field Analysis of a 3 dB-Tapered Ka-Band Array Antenna

  • Lee, Dong-Joon;Kang, Jeong-Jin;Kang, No-Weon;Kim, Wan-Sik;Park, Wee-Sang;Rothwell, Edward J.;Whitaker, John F.
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.1
    • /
    • pp.18-24
    • /
    • 2010
  • A Ka-band microstrip array antenna for wide-range detection of moving targets is analyzed through a photonicassisted reactive-near-field characterization technique. The antenna array employs a 3-dB-tapered feed network to suppress the sidelobe level while retaining a wide azimuth beamwidth for a wide detection range. The relative nearelectric field patterns of the array and its 3-dB-tapered feed lines have been measured using an electro-optic fieldmapping technique for minimally invasive millimeter-wave sensing. A number of typical limitations on the technique, involving bandwidth, low signal-modulation depth, and high laser-induced noise in high-frequency applications, have been overcome by suppressing the carrier portion of the optical interrogation beam.

TT&C Antenna Design for LEO Satellite (저궤도 위성용 TT&C 안테나의 설계)

  • Lee, Kwang-Jae;Woo, Duk-Jae;Lee, Taek-Kyung;Lee, Jae-Wook;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.642-650
    • /
    • 2010
  • In this paper, we study a TT&C link to obtain a required specifications of TT&C(Telemetry Tracking and Command system) antenna for an LEO(Low Earth Orbit) satellite. The premised mission orbit is the sun-synchronized and circular orbit and it performs earth-space observations. We design minimum TT&C link-budget to obtain required antenna beamwidth and gain. The proposed turnstile antenna provides wide beamwidth and circular polarization. We suggested the attaching position that shows the most effective results by confirming the variation of antenna performance when the proposed antenna is adapted to satellite's various positions. Also we proved the proposed antenna's ability while it is performing the mission through the orbit simulation based on the electrical performance of the proposed turnstile antenna.

Broadband multimode antenna and its array for wireless communication base stations

  • Wu, Rui;Chu, Qing-Xin
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.167-175
    • /
    • 2019
  • A wideband dual-polarized antenna coupling cross resonator is proposed for LTE700/GSM850/GSM900 base stations. An additional resonance is introduced to obtain strong coupling between the dipole and resonator. Moreover, the input impedance of the proposed antenna is steadily close to $50{\Omega}$, which results in better impedance matching. Therefore, a wide bandwidth can be achieved with multiresonance. A prototype is fabricated to verify the proposed design. The measured results show that the antenna has a fractional bandwidth of 35.7% from 690 MHz to 990 MHz for ${\mid}S_{11}{\mid}$ < -15 dB. Stable radiation patterns as well as gain are also obtained over the entire operating band. Moreover, a five-element antenna array with an electrical downtilt of $0^{\circ}$to $14^{\circ}$ is developed for modern base station applications. Measurement shows that a wide impedance bandwidth of 34.7% (690 MHz to 980 MHz), stable HPBW (3-dB beamwidth) of $65{\pm}5^{\circ}$, and high gain of $13.8{\pm}0.6dBi$ are achieved with electrical downtilts of $0^{\circ}$, $7^{\circ}$, and $14^{\circ}$.

Design and Fabrication of 24 GHz 3-Beam Scan Antennas for ACC Applications (자동 주행 차량을 위한 24 GHz 3-Beam Scan 안테나의 설계 및 제작)

  • 원영진;이영주;공영균;김영수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.1
    • /
    • pp.81-88
    • /
    • 2003
  • For driver's convenience, the ACC(Adaptive Cruise Control) requires a system which determines the direction of vehicles and controls the vehicle to keep the distance among the automobiles constant. This paper describes the microstrip array antennas designed to operate at 24 GHz, and used as a direction indicator of moving vehicles. 8${\times}$2 transmit array antenna with wide beamwidth, 8${\times}$4 receive center array antenna, and two 8${\times}$8 receive array antennas with narrow beamwidth were designed and fabricated. Measurement results for the arrays showed that the azimuthal beamwidth is 50$^{\circ}$and the gain is 16.7 dBi for the transmit array antenna. For the receive array antenna, the center, the left, and the right array antenna have beamwidths of 20$^{\circ}$, 13$^{\circ}$, 13$^{\circ}$respectively, and have gains of more than 20 dBi. The left and right array antenna have the beam tilt angle of ${\pm}$18$^{\circ}$. The measured radiation patterns showed a good agreement with the simulated patterns, and the designed array antennas are suitable fur detecting 3 directions of the vehicle within the scan angle area.