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A wideband dual‐polarized antenna coupling cross resonator is proposed for

LTE700/GSM850/GSM900 base stations. An additional resonance is introduced to

obtain strong coupling between the dipole and resonator. Moreover, the input

impedance of the proposed antenna is steadily close to 50 Ω, which results in bet-

ter impedance matching. Therefore, a wide bandwidth can be achieved with mul-

tiresonance. A prototype is fabricated to verify the proposed design. The measured

results show that the antenna has a fractional bandwidth of 35.7% from 690 MHz

to 990 MHz for |S11| < −15 dB. Stable radiation patterns as well as gain are also

obtained over the entire operating band. Moreover, a five‐element antenna array

with an electrical downtilt of 0° to 14° is developed for modern base station appli-

cations. Measurement shows that a wide impedance bandwidth of 34.7%

(690 MHz to 980 MHz), stable HPBW (3‐dB beamwidth) of 65 ± 5°, and high

gain of 13.8 ± 0.6 dBi are achieved with electrical downtilts of 0°, 7°, and 14°.
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1 | INTRODUCTION

With the significant development of wireless communication
systems, dual‐polarized antennas are widely used in base sta-
tions to reduce the effects of multipath fading and increase
signal reliability [1–4]. Dual‐polarized antennas have aroused
considerable attention in recent years [5–11]. With the rapid
development of long‐term evolution (LTE), the 700 MHz
band has become one of the international mainstreams for
LTE. Compared to other bands, the LTE700 band has advan-
tages such as relatively longer wavelength, larger signal cov-
erage, powerful penetration, and low cost of networking,
which are of great significance. Therefore, the lower fre-
quency bandwidth for base stations has been further extended
to 698 MHz to 960 MHz in combination with the high‐quality
frequency band LTE700. Consequently, broadband dual‐
polarized antennas for 698 MHz to 960 MHz have become

desirable. Recently, an increasing number of antennas have
been proposed for GSM850/GSM900 base stations [12–19].
However, they are still not wide enough to cover LTE700/
GSM850/GSM900 with dual‐polarization. Several techniques
have been proposed for impedance bandwidth enhancement
such as meandering probe feed [20] and multiparasitic res-
onator [21]. Moreover, broadband multidipole antennas have
been proposed for obtaining a stable beam width [22]. How-
ever, they have the disadvantage of being bulky. In addition,
antenna arrays are needed for real base station applications
[23,24]. Therefore, it is challenging as well as of great signifi-
cance to design a wideband dual‐polarized antenna array with
stable radiation patterns for base station applications.

In this paper, a broadband dual‐polarized antenna for
LTE700/GSM850/GSM900 base station is presented. By
employing a cross resonator, a new resonance is introduced.
The real part of the input impedance (input resistance) at
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high frequencies can be steadily increased to about 50 Ω,
and the imaginary part is steadily close to zero. Simultane-
ously, the zero point of the input impedance can be lowered

by properly adjusting the size and the position of the cross
resonator. As a result, the new resonant point can be low-
ered toward the operating band. Moreover, the impedance
matching between the two resonances is significantly
improved at the same time. Thus, a wide impedance band-
width can be achieved for wideband impedance matching
and multiresonances within the desired operating band.
Moreover, a five‐element antenna array with various down-
tilts is developed for real base station applications. Stable
HPBW and gain are obtained over the desired operating
band with electrical down tilts of 0°, 7°, and 14°.

2 | ANTENNA DESIGN

The configuration of a wideband dual‐polarized antenna is
illustrated in Figure 1. The proposed antenna consists of a
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TABLE 1 Optimized design parameters of the proposed antenna

Parameter GNDx GNDy H L

Value (mm) 345 345 85 77.6

Parameter d3 ws L3 fe1

Value (mm) 3.5 10 98 18.8

Parameter fe2 fe3 d hd

Value (mm) 77 78 26 7

Parameter td tp w1 w2

Value (mm) 2 1 8 6

Parameter w3 d2 d3 hf

Value (mm) 3 2.5 3.5 8
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pair of ±45° orthogonally placed dipoles, a pair of U‐
shaped strip feed lines, baluns, a cross resonator, and a
reflector. The baluns are connected with the dipole and the
box‐shaped reflector, and function as a balanced to unbal-
anced transformer. The cross resonator is placed over the
dipole and is fixed by four plastic pillars with a height of
hd. The length of the dipole 2L is first designed as 0.5λ,
and the antenna is placed at a height of 0.25λ (λ is the
wavelength at the center frequency of 820 MHz) upon the
box‐shaped reflector to obtain a unidirectional radiation
pattern. The inner conductor of the coaxial cables (with a
characteristic impedance of 50 Ω) is connected with the
end of the U‐shaped feeding lines, whereas the outer con-
ductors are soldered on the end of the balun at a short
height of hf from the reflector. The U‐shaped feeding lines
consist of two portions, and are made by folding a metallic
strip into a U‐shape with a thickness of 1 mm. The first
portion, which is a vertically placed transmission line, is
connected with the inner conductor of the coaxial cable,
and the other end of this portion is connected with the edge

of the second portion. The second portion is an L‐shaped
coupling strip line, which can be adjusted for the antenna
impedance matching [25,26]. The antenna was simulated
and optimized using ANSOFT HFSS [27]; the detailed
parameters are listed in Table 1. The proposed wideband
dual‐polarized antenna was fabricated by metal casting, and
it was then assembled and fixed together by plastic screws.
The reflector was made of an aluminum alloy plate with a
thickness of 2 mm and four holes at the center. Four metal-
lic screws were used to fix the antenna through these four
holes.

As shown clearly in Figure 2, a new resonant point is
induced by the coupling resonator near the dipole. In addi-
tion, two new resonances are induced by the coupling res-
onators with two different sizes, as illustrated in Figure 3.
Using a resonator‐coupled dipole for multiresonance, a wide
bandwidth can be achieved. Based on this theory, a mul-
tiresonance wideband dual‐polarized antenna with a cross
resonator is proposed. The input impedance and |S11| of the

100

80

60

40

20

0

–20

–40
0.7 0.8 0.9

Frequency (GHz)
0.6 1.0

X i
n

(Ω
)

100

75

50

25

0

–25

–50

–75
1.1

L3

ws

(A) 

Frequency (GHz)

0.7 0.8 0.9 1.0

(B)

L3 = 94 mm
L3 = 100 mm
L3 = 106 mm
Without resonator

|S
11

|(
dB

)

0

–5

–10

–15

–20

–25

–30
0.6

R i
n

(Ω
)

L3 = 94 mm
L3 = 100 mm
L3 = 106 mm
Without resonator

FIGURE 4 Input impedance and |S11| of the proposed antenna
with different L3

Frequency (GHz)

hd = 7 mm

X i
n

(Ω
)

–20

0

0.6 0.7 0.8 0.9 1.0 1.1

20

40

60

80

R i
n

( Ω
)

100

75

50

25

0

–25

–50

–75

hd = 9 mm
hd = 11 mm
Without resonator

(A) 

(B) 

Frequency (GHz)

hg = 7 mm
hg = 9 mm
hg = 11 mm
Without resonator

0

–5

–10

–15

–20

–25

–30

–35
0.6 0.7 0.8 0.9 1.0

|S
11

|(
dB

)

FIGURE 5 Input impedance and |S11| of the proposed antenna
with different hd

WU AND CHU | 169



proposed antenna with different sizes and positions of the
cross resonator are illustrated in Figures 4 and 5, respec-
tively. As shown in Figure 4, with an increase in L3 (the
length of the resonator), the input resistance is increased
and becomes steadily close to 50 Ω, especially around the

higher frequency of 950 MHz. On the other hand, the imag-
inary part of the input impedance is flatter and remains stea-
dily close to zero, whereas the zero point of the input
impedance moves toward the lower band. Therefore, there
exist two resonant modes in the entire operating band, and
impedance matching between the two modes is improved.
As a result, a wide impedance bandwidth is achieved. Simi-
larly, Figure 5 illustrates the input impedance and |S11| with
various values of hd (the vertical distance of the resonator
from the dipole). With a decrease in hd, the input impe-
dance becomes steadily close to 50 Ω, and the zero point of
the imaginary part moves toward 950 MHz. Thus, a better
impedance matching is obtained, and two resonant points
are formed in the desired operating band, resulting in an
enhanced impedance bandwidth. The current distribution on
the cross resonator is shown in Figure 4A. It is clearly seen
that when port 1 is excited, the current on the symmetric
plane is almost null. Based on the above analysis and state-
ments, the mechanisms of the proposed antenna can be
explained as follows. In general, the lower resonant point is
decided by the size of the dipole. Our desired operating
band is 698 MHz to 960 MHz, and the input impedance is
relatively far from 50 Ω. Therefore, a narrow bandwidth
and bad impedance matching are exhibited in the absence
of a resonator. By employing a cross resonator, a new reso-
nant mode is introduced and the impedance matching is
improved over the operating band. We can move this mode
by changing the size and position of the resonator. Since
the lower resonant point is mainly decided by the size of
the dipole, we can control the two resonant points almost
independently. Therefore, multiresonance and good impe-
dance matching in the desirable operating band can be
achieved to form a wider impedance bandwidth.

3 | ANTENNA PERFORMANCE

A prototype was fabricated to verify the antenna element,
as shown in Figure 6B. The measured results of the S
parameters, antenna gain, and radiation patterns were

FIGURE 6 (A) Current distribution on
the resonator when port 1 is excited, (B)
photo of the proposed antenna
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obtained using an Agilent N5230A vector network analyzer
and anechoic chamber. As shown in Figure 7, there is a
good agreement between the measured and simulated val-
ues of |S11| and |S21|. A fractional bandwidth of 35.7%
(from 690 MHz to 990 MHz) for |S11| < −15 dB and an
isolation of more than 28 dB were achieved. As shown in
Figure 8, the antenna gain is stable around 8.65 dBi with a
variation in 0.35 dBi. The 3 dB‐beamwidth (HPBW) is
65.5 ± 3.5° in the H‐plane (YOZ plane). The results for
the H‐plane are given for the geometric symmetry of the
antenna. Figure 9 illustrates very stable radiation patterns at

700 MHz, 850 MHz, and 950 MHz for the H‐plane and V‐
plane (XOZ plane). The measured results agree well with
the simulated ones.

4 | FIVE‐ELEMENT ANTENNA
ARRAY

4.1 | Antenna design

In an actual base station, a high gain, stable HPBW in the H‐
plane (65 ± 5°), narrow radiation in the V‐plane, and electrical
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downtilt are needed. A five‐element antenna array is presented
for application in a modern base station. The antenna element
space is 250 mm (0.69λ0, where λ0 is the free‐space wave-
length at 820 MHz). This space is two times the distance of
the higher band element in the multiarray. Two‐phase shifters
are used in the five‐element antenna array to realize an electri-
cal downtilt of 0° to 14°. Compared with the traditional
mechanical downtilt, the electrical downtilt has the advantage
of obtaining more stable radiation patterns with different
downtilts. Furthermore, it is easier to control the electrical
downtilt. A prototype was fabricated to verify the proposed
antenna design, as shown in Figure 10.

4.2 | Antenna performance

The simulated and measured S parameters of the antenna
array are shown in Figure 11. The measured results indi-
cate a wide impedance bandwidth of 34.7% (690 MHz to
980 MHz), and an isolation of more than 23 dB over the
entire band. The measured HPBW (H‐plane) and gain with
different electrical downtilts are listed in Table 2. It is clear
that a stable HPBW of 65 ± 5° is achieved with downtilts
of 0°, 7°, and 14°. In addition, the antenna gains are
13.8 ± 0.5 dBi, 13.9 ± 0.5 dBi, and 13.7 ± 0.5 dBi for
downtilts of 0°, 7°, and 14°, respectively. The simulated
and measured radiation patterns with different electrical
downtilts at 698 MHz, 820 MHz, and 960 MHz are shown
in Figure 12. Very stable radiation patterns are obtained
from 698 MHz to 960 MHz with electrical downtilts of 0°,
7°, and 14°. The measured results agree well with the sim-
ulated ones. All the results are shown when port 1 is driven
because of the symmetric structure of the antenna array.

TABLE 2 Measured HPBW(H‐Plane) and gain of the antenna array with different downtilts

Fre (MHz)

HPBW (deg) Antenna gain (dBi)

0° 7° 14° 0° 7° 14°

698 70.0 69.8 69.4 13.3 13.4 13.2

750 68.6 69.6 69.2 13.7 13.5 13.3

790 67.5 68.5 68.8 14.0 14.0 13.8

820 67.0 67.8 68.5 13.6 13.5 13.5

870 65.3 65.8 65.7 14.1 14.0 14.1

920 65.2 65.4 66.1 14.3 14.4 14.2

960 60.2 66.4 66.7 13.6 13.8 13.4

Low–frequency element of 690–960 MHz High–frequency element of 1,710–26,900 MHz
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FIGURE 13 Schematic diagram of
multiarray antenna

TABLE 3 Antenna gain with various higher band element spaces

Element
space 0.7 × λ2.2GHz 0.8 × λ2.2GHz 0.9 × λ2.2GHz λ2.2GHz

Gain
(dBi)

13.2 13.6 13.9 13.7

TABLE 4 Comparison with existing antennas

Antennas
Application
for multiarray Antenna size (mm × mm) Fractional bandwidth Gain (dBi)

Isolation
(dB)

HPBW
(deg)

In [6] No 1.17λ0 × 1.17λ0 × 0.21λ0 45.5% (VSWR < 2.0) 9.7 38 ~70

In [7] No 1.06λ0 × 2.2λ0 × 0.254λ0 57.5% (VSWR < 1.5) 8.8 ± 0.3 31 81.2 ± 4.3

In [8] No 1.115λ0 × 1.115λ0 × 0.25λ0 52% (VSWR < 1.5) 7.8 ± 0.8 35 Not given

In [9] Yes Not given 21.2% (VSWR < 2.0) ~8.8 31 Not given

Our work Yes 0.94λ0 × 0.94λ0 × 0.245λ0 35.7% (VSWR < 1.5) 8.65 ± 0.35 28 65 ± 5
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4.3 | Application of multiarray base station
antenna

A schematic diagram of the multiarray based on the pro-
posed dual‐polarized antenna is presented in Figure 13. It is
observed that sufficient space can be reserved for the higher
frequency element using the cross‐type dual‐polarized
antenna in the multiarray antenna. For an antenna array, the
higher band element is more sensitive for mutual coupling
because the wavelength is much more shorter. Table 3
shows the maximum gain with various higher element
spaces for a three‐element higher frequency antenna array.
It is clear that the antenna achieved 13.9 dBi when the
space was 0.9 × λ2.2GHz (123 mm). Therefore, the space of
the higher band element is about 0.9 × λ2.2GHz and that of
the lower band element space is about 0.69 × λ0.82GHz.
Thus, the multiarray antenna based on our proposed lower
band antenna achieved improved antenna properties, to
some extent, at the expense of lower band antenna gain.

5 | CONCLUSION

A wideband dual‐polarized antenna with cross resonator has
been proposed based on our novel concept of multimode filters.
By adding the cross resonator, a new resonant mode was
induced and the impedance matching was greatly improved.
The resonance and input impedance can be adjusted by chang-
ing the size and position of the resonator. As a result, multireso-
nance and improved impedance matching were achieved over
the desired operating band. A fractional bandwidth of 35.7%
(from 690 MHz to 990 MHz) for |S11| < −15 dB was
achieved. In addition, stable gain and radiation patterns were
obtained. A five‐element antenna array was developed with an
electrical downtilt of 0° to 14° for base station application. A
stable HPBW of 65 ± 5° and a high gain of 13.8 ± 0.6 dBi
were achieved with electrical downtilts of 0°, 7°, and 14° over
the band of 690 MHz to 980 MHz (|S11| < −15 dB). Compar-
isons with related previous works are given in Table 4. All the
results show that the proposed antenna is a promising choice
for LTE700/GSM800/GSM900 and 2G/3G/4G/5G multiarray
base station applications.
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