• Title/Summary/Keyword: Wide spectral range

Search Result 139, Processing Time 0.024 seconds

Chaotic Behavior on Rocking Vibration of Rigid Body Block Structure under Two-dimensional Sinusoidal Excitation (In the Case of No Sliding)

  • Jeong, Man-Yong;Lee, Hyun-;Kim, Ji-Hoon;Kim, Jeong-Ho;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1249-1260
    • /
    • 2003
  • This present work focuses on the influence of nonlinearities associated with impact on the rocking behavior of a rigid body block subjected to a two-dimensional excitation in the horizontal and vertical directions. The nonlinearities in rocking system are found to be strongly dependent on the impact between the block and the base that abruptly reduces the kinetic energy. In this study, the rocking systems of the two types are considered : The first is an undamped rocking system model that disregards the energy dissipation during the impact and the second is a damped rocking system, which incorporates energy dissipation during the impact. The response analysis is carried out by a numerical method using a non-dimensional rocking equation in which the variations in the excitation levels are considered. Chaos responses are observed over a wide range of parameter values, and particularly in the case of large vertical displacements, the chaotic characteristics are observed in the time histories, Poincare sections, the power spectral density and the largest Lyapunov exponents of the rocking responses. Complex behavior characteristics of rocking responses are illustrated by the Poincare sections.

Atmospheric Correction Problems with Multi-Temporal High Spatial Resolution Images from Different Satellite Sensors

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.321-330
    • /
    • 2015
  • Atmospheric correction is an essential part in time-series analysis on biophysical parameters of surface features. In this study, we tried to examine possible problems in atmospheric correction of multitemporal High Spatial Resolution (HSR) images obtained from two different sensor systems. Three KOMPSAT-2 and two IKONOS-2 multispectral images were used. Three atmospheric correction methods were applied to derive surface reflectance: (1) Radiative Transfer (RT) - based absolute atmospheric correction method, (2) the Dark Object Subtraction (DOS) method, and (3) the Cosine Of the Uun zeniTh angle (COST) method. Atmospheric correction results were evaluated by comparing spectral reflectance values extracted from invariant targets and vegetation cover types. In overall, multi-temporal reflectance from five images obtained from January to December did not show consistent pattern in invariant targets and did not follow a typical profile of vegetation growth in forests and rice field. The multi-temporal reflectance values were different by sensor type and atmospheric correction methods. The inconsistent atmospheric correction results from these multi-temporal HSR images may be explained by several factors including unstable radiometric calibration coefficients for each sensor and wide range of sun and sensor geometry with the off-nadir viewing HSR images.

BVR PHOTOMETRY OF SUPERGIANT STARS IN HOLMBERG II

  • Sohn Y.J.;Chang S.W.;Kim D.Y.;Kim J.W.;Kim S.H.;Lee J.E.;Lee J.G.;Lee J.M.;Lee M.Y.;Lee S.Y.;Lee U.S.;Park B.K.;Park H.E.
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • We report the photometric properties in BVR bands for the resolved bright supergiant stars in the dwarf galaxy Holmberg II. The color-magnitude diagrams and color-color diagram of 374 resolved stars indicate that the majority of the member stars are supergiant stars with a wide range of spectral type between B-K. A comparison with theoretical evolutionary tracks indicates that the supergiant stars in the observed field have progenitor masses between ${\sim}10M_{\bigodot}\;and\;20M_{\bigodot}$. The exponent of luminosity function in V is in good agreement with those of the Small and Large Magellanic Clouds.

Seismic Performance Assessment of a Mid-Rise RC Building subjected to 2016 Gyeongju Earthquake (2016년 경주지진에 의한 중층 RC 건물의 내진 성능 평가)

  • Lee, Do Hyung;Jeon, Jong-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.473-483
    • /
    • 2016
  • In this paper, seismic performance assessment has been examined for a mid-rise RC building subjected to 2016 Gyeongju earthquake occurred in Korea. For the purpose of the paper, 2D external and internal frames in each direction of the building have been employed in the present comparative analyses. Nonlinear static pushover analyses have been conducted to estimate frame capacities. Nonlinear dynamic time-history analyses have also been carried out to examine demands for the frames subjected to ground motions recorded at stations in near of Gyeongju and a previous earthquake ground motion. Analytical predictions demonstrate that maximum demands are significantly affected by characteristics of both spectral acceleration response and spectrum intensity over a wide range of periods. Further damage potential of the frames has been evaluated in terms of fragility analyses using the same ground motions. Fragility results reveal that the ground motion characteristics of the Gyeongju earthquake have little influence on the seismic demand and fragility of frames.

Light transmission in nanostructures

  • Kim, D. S.;Park, Q-H.;S. H. Han;Ch. Lienau
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.113-115
    • /
    • 2003
  • We investigate transmission of light in nanoscale structures. We present spatial and temporal domain measurements of the dephasing of surface plasmon excitations in metal films with periodic nano-hole arrays. By probing coherent spatial SP propagation lengths of a few f1. $\mu$m and an ultrafast decay of the SP polarization on a 10 fs timescale, we demonstrate that the SP transmission peaks are homogeneously broadened by the SP radiative lifetime. The pronounced wavelength and hole size dependence of the dephasing rate shows that the microscopic origin of the conversion of SP into light is a Rayleigh-like scattering by the periodic hole array. We have experimentally studied the dephasing of surface plasmon excitations in metallic nano-hole arrays. By relating nanoscopic SP propagation, ultrafast light transmission and optical spectra, we demonstrate that the transmission spectra of these plasmonic bandgap structures are homogeneously broadened. The spectral line shape and dephasing time are dominated by Rayleigh scattering of SP into light and can varied over a wide range by controlling the resonance energy and/or hole radius. This opens the way towards designing SP nano-optic devices and spatially and spectrally tailoring light -matter interactions on nanometer length scales.

An Optimum Choice of Approximation Path for Derivation of New Class of Closed-Form Green's Functions (새로운 형태의 Closed-Form 그린함수의 유도를 위한 근사 경로의 최적선택)

  • Lee Young-Soon;Kim Eui-Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.418-426
    • /
    • 2005
  • Based upon three level approximation and the steepest descent path(SDP) method, we consider an optimum choice of approximation path for derivation of new class of closed-flrm Green's functions which can lead to the analytic evaluation of MoM(Method of Moment) matrix elements. It is observed that the present method can give more accurate evaluation of the spatial Green's functions than the previous method, even without the advance investigation of the spectral functions, over a wide frequency range. In order to check the validity of the present method, some numerical results are presented.

The Study on Advanced Frequency Up Converter (개선된 주파수 상향 변환기에 관한 연구)

  • Lee, Seung-Dae;Shin, Hyun-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3079-3085
    • /
    • 2014
  • This paper suggests a power level controllable frequency up-converter which is designed and fabricated using both the filtering technology consisted with only passive devices and a multi-level digital attenuator. The suggested frequency up-converter simultaneously realizes the low power consumption and the low cost model. Because of the possibility for controlling power levels, it is possible to use the suggested frequency up-converter for wide spectral range. According to the experimental results, the average gain value of 0.75dB is obtained for the bandwidth of 160MHz at the center frequency of 1,200MHz. Especially, it is confirmed that the power level can be controlled from 10 to -21.5dBm through the digital attenuator.

A Semi-empirical Model for Microwave Polarimetric Radar Backscattering from Bare Soil Surfaces

  • Oh, Yi-Sok
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.17-35
    • /
    • 1994
  • A semi-empirical model for microwave polarimetric radar backscattering from bare soil surfaces was developed using polarmetric radar measurements and the knowledge based on the theoretical and numerical solutions. The microwave polarimetric backscatter measurements were conducted for bare soil surfaces under a variety of roughness and moisture conditions at L-, C-, and X-band frequencies at incidence angles ranging from 10` to 70`. Since the accrate target parameters as well as the radar parameters are necessary for radar scattering modeling, a complete and accurate set of ground truth data were also collected using a laser profile meter and dielectric probes for each surface condition, from which accurate measurements were made of the rms height, correlation length, and dielectric constant. At first, the angular and spectral dependencies of the measured radar backscatter for a wide range of roughnesses and moisture conditions are examined. Then, the measured scattering behavior was tested using theoretical and numerical solutions. Based on the experimental observations and the theoretical and numerical solutions, a semi-empirical model was developed for backscattering coeffients in terms of the surface roughness parameters and the relative dielectric constant of the soil surface. The model was found to yield very good agreement with the backscattering measurements of this study as well as with independent measurements.

Optical Design of an Off-axis Five-mirror-anastigmatic Telescope for Near Infrared Remote Sensing

  • Li, Xing Long;Xu, Min;Pei, Yun Tian
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.343-348
    • /
    • 2012
  • This paper described an off-axis five-mirror-anastigmatic telescope. It is composed of three aspheric surfaces and one spherical surface while the third mirror and fifth mirror have the same parameters at the same place. This configuration is useful for having wide field of view. The strip full field of view for the near infrared telescope is $20^{\circ}{\times}0.2^{\circ}$. The entrance pupil is located in front of the first mirror. There is an intermediate image between the second mirror and the third mirror. The entrance pupil diameter is 100 mm and the effective focal length is 250 mm. The spectral range is $0.85-1.75{\mu}m$. The pixel pitch is $15{\mu}m$. The image quality is near the diffraction limit. Some methods were used to restrain the stray light such as a field stop near the intermediate image, the baffle, the narrow-band pass filter and a stop in front of the focal plane.

Chromophorylation of a Novel Cyanobacteriochrome GAF Domain from Spirulina and Its Response to Copper Ions

  • Jiang, Su-Dan;sheng, Yi;Wu, Xian-Jun;Zhu, Yong-Li;Li, Ping-Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.233-239
    • /
    • 2021
  • Cyanobacteriochromes (CBCRs) are phytochrome-related photoreceptor proteins in cyanobacteria and cover a wide spectral range from ultraviolet to far-red. A single GAF domain that they contain can bind bilin(s) autocatalytically via heterologous recombination and then fluoresce, with potential applications as biomarkers and biosensors. Here, we report that a novel red/green CBCR GAF domain, SPI1085g2 from Spirulina subsalsa, covalently binds both phycocyanobilin (PCB) and phycoerythrobilin (PEB). The PCB-binding GAF domain exhibited canonical red/green photoconversion with weak fluorescence emission. However, the PEB-binding GAF domain, SPI1085g2-PEB, exhibited an intense orange fluorescence (λabs.max = 520 nm, λfluor.max = 555 nm), with a fluorescence quantum yield close to 1.0. The fluorescence of SPI1085g2-PEB was selectively and instantaneously quenched by copper ions in a concentration-dependent manner and exhibited reversibility upon treatment with the metal chelator EDTA. This study identified a novel PEB-binding cyanobacteriochrome-based fluorescent protein with the highest quantum yield reported to date and suggests its potential as a biosensor for the rapid detection of copper ions.