• Title/Summary/Keyword: Wide band spectrum

Search Result 122, Processing Time 0.032 seconds

Performance Comparison of UWB DS-CDMA/OFDM/MC-CDMA System in S-V Channel Environment (S-V채널 환경에서 UWB DS-CDMA/OFDM/MC-CDMA 시스템 성능 비교)

  • Lee Hyung-Ki;Kwak Kyung-Sup
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.53-60
    • /
    • 2005
  • In this paper, we analyze the performance of UWB MC-CDMA system and compareit with DS-CDMA and OFDM systems, which have been drafting in standardization even now. Too many Rake Fingers are needed in the DS-CDMA system to separate multi-path signals, which results in highsystem complexity. OFDM radio power fails to qualify for FCC certification unless frequency hopping. From this reason, MC-CDMA system considered is proposed in this paper. It has lower complexity compared with DS-CDMA and shows good performance against frequency selective fading. In addition, for a wide-band communication, less radio power per spectrum is allowed in the MC-CDMA system than in an OFDM system. Simulation result show that the DS-CDMA system has better performance with single user, but MC-CDMA system shows best performance in case of multi user environment.

A Study on the Measurement of Foreign Material in Dissimilar Metal Contact Using Pulse Laser and Confocal Fabry-Perot Interferometer (펄스 레이저와 CFPI를 이용한 이종금속 접촉부의 이물질 측정에 관한 연구)

  • Hong, Kyung-Min;Kang, Young-June;Park, Nak-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.160-164
    • /
    • 2013
  • A laser ultrasonic inspection system is a non-contact inspection device which generates and measures ultrasonics by using laser beam. A laser ultrasonic inspection system provides a high measurement resolution because the ultrasonic signal generated by a pulse laser beam has a wide-band spectrum and the ultrasonic signal is measured from a small focused spot of a measuring laser beam. In this study, galvanic corrosion phenomenon was measured by non-destructive and non-contact method using the laser. The case of mixed foreign material on the part of corrosion was assumed and laser ultrasonic experiment was conducted. Ultrasonic was generated by pulse laser from the back side of the specimen and ultrasonic signal was acquired from the same location of the front side using continuous wave laser and Confocal Fabry-Perot Interferometer(CFPI). The characteristic of the ultrasonic signal of exist foreign material part was analyzed and the location and size of foreign material was measured.

IEEE 802.22 WG에서의 CR응용: WRAN MAC설계

  • Go Gwang-Jin;Hwang Seong-Hyeon;Song Myeong-Seon;Kim Chang-Ju;Gang Beop-Ju
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.58
    • /
    • pp.38-49
    • /
    • 2006
  • In order to increase the spectrum efficiency, recently, there is the number of studies for CR technology. For instance, IEEE 802.22 WRAN(Wireless Regional Area Network) WG considered the CR technology as a solution of WRAN system to serve the high speed internet service(1.5 Mbps down stream and 384 kbps up stream) in 100 km overall coverage and 54 MHz-746 MHz band. Basically, in MAC point of view, the WRAN system have been standardizing based on the IEEE 802.16 MAC layer features such as Data transmission method, QoS provision and Bandwidth request schemes. Additionally, the WRAN system further include CR nature functions such as incumbent user protection, self coexistence which would be importantly considered. Also, the inherent WRAN functions are added such as channel bonding and fractional bandwidth usage. This paper mainly explained frame structure, IU protection, self coexistence which are key functions of WRAN system. Finally, in this paper, we expressed a prospect of IEEE 802.22 WRAN standardization.

A Design on High Frequency CMOS VCO for UWB Applications (UWB 응용을 위한 고주파 CMOS VCO 설계 및 제작)

  • Park, Bong-Hyuk;Lee, Seung-Sik;Choi, Sang-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.213-218
    • /
    • 2007
  • In this paper, we propose the design and fabrication on high frequency CMOS VCO for DS-UWB(Direct-Sequence Ultra-WideBand) applications using 0.18 ${\mu}m$ process. The complementary cross-coupled LC oscillator architecture which is composed of PMOS, NMOS symmetrically, is designed for improving the phase noise characteristic. The resistor is used instead of current source that reduce the 1/f noise of current source. The high-speed buffer is needed for measuring the output characteristic of VCO using spectrum analyzer, therefore the high-speed inverter buffer is designed with VCO. A fabricated core VCO size is $340{\mu}m{\times}535{\mu}m$. The VCO is tunable between 7.09 and 7.52 GHz and has a phase noise lower than -107 dBc/Hz at 1-MHz offset over entire tuning range. The measured harmonic suppression is 32 dB. The VCO core circuit draws 2.0 mA from a 1.8 V supply.

Synthesis of Al-Doped ZnO by Microwave Assisted Hydrothermal Method and its Optical Property (마이크로파 수열합성법을 이용한 알루미늄이 도핑된 산화아연 합성 및 그 광학적 특성)

  • Hyun, Mi-Ho;Kang, Kuk-Hyoun;Lee, Dong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1555-1562
    • /
    • 2015
  • Metal oxide semiconductors have been applied in several areas, such as solar cells, sensor, optical elements and displays, due to the high surface area, unique electrical and optical characteristics. Zinc oxide among the metal oxide has excellent physicochemical properties. Zinc oxide is a n-type semiconductor with a wide direct transition band gap of 3.37 eV at room temperature and large exciton binding energy of 60 meV. Cation-doped zinc oxide studies were conducted to complement the electrical and optical characteristics. In this paper, Al-doped ZnO was synthesized by hydrothermal synthesis using microwaves. ZnO was synthesized by adjusting the precursor ratio and using different dopants. The optimal ZnO synthesis conditions for crystal shape and optical properties were determined. The optical properties of aluminum doped zinc oxide were then examined by SEM, XRD, PL, UV-vis absorbance spectrum, and EDS.

Using Optical Flow and HoG for Nighttime PDS (야간 PDS를 위한 광학 흐름과 기울기 방향 히스토그램 이용 방법)

  • Cho, Hi-Tek;Yoo, Hyeon-Joong;Kim, Hyoung-Suk;Hwang, Jeng-Neng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1556-1567
    • /
    • 2009
  • The death rate of pedestrian in car accidents in Korea is 2.5 times higher than the average of OECD countries'. If a system that can detect pedestrians and send alarm to drivers is built and reduces the rate, it is worth developing such a pedestrian detection system (PDS). Since the accident rate in which pedestrians are involved is higher at nighttime than in daytime, the adoption of nighttime PDS is being standardized by big auto companies. However, they are usually using night visions or multiple sensors, which are usually expensive. In this paper we suggest a method for nighttime PDS using single wide dynamic range (WDR) monochrome camera in visible spectrum band. In our experiments, pedestrians were accurately detected if only most edges of pedestrians could be obtained.

A Deep Learning-based Automatic Modulation Classification Method on SDR Platforms (SDR 플랫폼을 위한 딥러닝 기반의 무선 자동 변조 분류 기술 연구)

  • Jung-Ik, Jang;Jaehyuk, Choi;Young-Il, Yoon
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.568-576
    • /
    • 2022
  • Automatic modulation classification(AMC) is a core technique in Software Defined Radio(SDR) platform that enables smart and flexible spectrum sensing and access in a wide frequency band. In this study, we propose a simple yet accurate deep learning-based method that allows AMC for variable-size radio signals. To this end, we design a classification architecture consisting of two Convolutional Neural Network(CNN)-based models, namely main and small models, which were trained on radio signal datasets with two different signal sizes, respectively. Then, for a received signal input with an arbitrary length, modulation classification is performed by augmenting the input samples using a self-replicating padding technique to fit the input layer size of our model. Experiments using the RadioML 2018.01A dataset demonstrated that the proposed method provides higher accuracy than the existing methods in all signal-to-noise ratio(SNR) domains with less computation overhead.

Location Estimation Method using Extended Kalman Filter with Frequency Offsets in CSS WPAN (CSS WPAN에서 주파수 편이를 보상하는 확장 Kalman 필터를 사용한 이동노드의 위치추정 방식)

  • Nam, Yoon-Seok
    • The KIPS Transactions:PartC
    • /
    • v.19C no.4
    • /
    • pp.239-246
    • /
    • 2012
  • The function of location estimation in WPAN has been studied and specified on the ultra wide band optionally. But the devices based on CSS(Chirp Spread Spectrum) specification has been used widely in the market because of its functionality, cheapness and support of development. As the CSS device uses 2.4GHz for a carrier frequency and the sampling frequency is lower than that of the UWB, the resolution of a timestamp is very coarse. Then actually the error of a measured distance is very large about 30cm~1m at 10 m depart. And the location error in ($10m{\times}10m$) environment is known as about 1m~2m. So for some applications which require more accurate location information, it is very natural and important to develop a sophisticated post processing algorithm after distance measurements. In this paper, we have studied extended Kalman filter with the frequency offsets of anchor nodes, and proposed a novel algorithm frequency offset compensated extended Kalman filter. The frequency offsets are composed with a variable as a common frequency offset and constants as individual frequency offsets. The proposed algorithm shows that the accurate location estimation, less than 10cm distance error, with CSS WPAN nodes is possible practically.

Efficient Red-Color Emission of InGaN/GaN Double Hetero-Structure Formed on Nano-Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Gong, Su-Hyeon;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.174-175
    • /
    • 2012
  • (In, Ga) N-based III-nitride semiconductor materials have been viewed as the most promising materials for the applications of blue and green light emitting devices such as light-emitting diodes (LEDs) and laser diodes. Although the InGaN alloy can have wide range of visible wavelength by changing the In composition, it is very hard to grow high quality epilayers of In-rich InGaN because of the thermal instability as well as the large lattice and thermal mismatches. In order to avoid phase separation of InGaN, various kinds of structures of InGaN have been studied. If high-quality In-rich InGaN/GaN multiple quantum well (MQW) structures are available, it is expected to achieve highly efficient phosphor-free white LEDs. In this study, we proposed a novel InGaN double hetero-structure grown on GaN nano-pyramids to generate broad-band red-color emission with high quantum efficiency. In this work, we systematically studied the optical properties of the InGaN pyramid structures. The nano-sized hexagonal pyramid structures were grown on the n-type GaN template by metalorganic chemical vapor deposition. SiNx mask was formed on the n-type GaN template with uniformly patterned circle pattern by laser holography. GaN pyramid structures were selectively grown on the opening area of mask by lateral over-growth followed by growth of InGaN/GaN double hetero-structure. The bird's eye-view scanning electron microscope (SEM) image shows that uniform hexagonal pyramid structures are well arranged. We showed that the pyramid structures have high crystal quality and the thickness of InGaN is varied along the height of pyramids via transmission electron microscope. Because the InGaN/GaN double hetero-structure was grown on the nano-pyramid GaN and on the planar GaN, simultaneously, we investigated the comparative study of the optical properties. Photoluminescence (PL) spectra of nano-pyramid sample and planar sample measured at 10 K. Although the growth condition were exactly the same for two samples, the nano-pyramid sample have much lower energy emission centered at 615 nm, compared to 438 nm for planar sample. Moreover, nano-pyramid sample shows broad-band spectrum, which is originate from structural properties of nano-pyramid structure. To study thermal activation energy and potential fluctuation, we measured PL with changing temperature from 10 K to 300 K. We also measured PL with changing the excitation power from 48 ${\mu}W$ to 48 mW. We can discriminate the origin of the broad-band spectra from the defect-related yellow luminescence of GaN by carrying out PL excitation experiments. The nano-pyramid structure provided highly efficient broad-band red-color emission for the future applications of phosphor-free white LEDs.

  • PDF

Fabrication of Schottky Device Using Lead Sulfide Colloidal Quantum Dot

  • Kim, Jun-Kwan;Song, Jung-Hoon;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.189-189
    • /
    • 2012
  • Lead sulfide (PbS) nanocrystal quantum dots (NQDs) are promising materials for various optoelectronic devices, especially solar cells, because of their tunability of the optical band-gap controlled by adjusting the diameter of NQDs. PbS is a IV-VI semiconductor enabling infrared-absorption and it can be synthesized using solution process methods. A wide choice of the diameter of PbS NQDs is also a benefit to achieve the quantum confinement regime due to its large Bohr exciton radius (20 nm). To exploit these desirable properties, many research groups have intensively studied to apply for the photovoltaic devices. There are several essential requirements to fabricate the efficient NQDs-based solar cell. First of all, highly confined PbS QDs should be synthesized resulting in a narrow peak with a small full width-half maximum value at the first exciton transition observed in UV-Vis absorbance and photoluminescence spectra. In other words, the size-uniformity of NQDs ought to secure under 5%. Second, PbS NQDs should be assembled carefully in order to enhance the electronic coupling between adjacent NQDs by controlling the inter-QDs distance. Finally, appropriate structure for the photovoltaic device is the key issue to extract the photo-generated carriers from light-absorbing layer in solar cell. In this step, workfunction and Fermi energy difference could be precisely considered for Schottky and hetero junction device, respectively. In this presentation, we introduce the strategy to obtain high performance solar cell fabricated using PbS NQDs below the size of the Bohr radius. The PbS NQDs with various diameters were synthesized using methods established by Hines with a few modifications. PbS NQDs solids were assembled using layer-by-layer spin-coating method. Subsequent ligand-exchange was carried out using 1,2-ethanedithiol (EDT) to reduce inter-NQDs distance. Finally, Schottky junction solar cells were fabricated on ITO-coated glass and 150 nm-thick Al was deposited on the top of PbS NQDs solids as a top electrode using thermal evaporation technique. To evaluate the solar cell performance, current-voltage (I-V) measurement were performed under AM 1.5G solar spectrum at 1 sun intensity. As a result, we could achieve the power conversion efficiency of 3.33% at Schottky junction solar cell. This result indicates that high performance solar cell is successfully fabricated by optimizing the all steps as mentioned above in this work.

  • PDF