• Title/Summary/Keyword: Wi-Fi speaker

Search Result 5, Processing Time 0.02 seconds

Design and Implementation of Farm Pest Animals Repelling System Based on Open Source (오픈소스 기반의 농작물 유해 야생동물 퇴치 시스템의 설계 및 구현)

  • Woo, Chongho
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.451-459
    • /
    • 2016
  • The damages on the crops by the wild animals such as wild boars and water deer are serious in rural areas these days. In this paper, a low-cost and adaptive system based on open source for sensing and repelling farm pest animals is proposed. The system contains the server which is Arduino Due connected with the wireless communication modules such as RF, Zigbee, and WiFi module, speaker, and so on. It also has the sensing modules and LED blinkers which communicates with the server by wireless modules. Once a detecting signal is transmitted to the server. The server is waked up from sleep mode and the repelling subsystems such as loud speaker and LED blinker(s) are activated to scare the unwanted animal away. The total system is managed by Android smartphone easily.

Development of Fire Evacuation Guidance System using Characteristics of High Frequency and a Smart Phone (고주파 특성과 스마트폰을 활용한 화재 대피 안내시스템 개발)

  • Jeon, Yu-Jin;Jun, Yeon-Soo;Yeom, Chunho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1376-1383
    • /
    • 2020
  • Although studies on fire evacuation systems are increasing, studies on the evacuation of evacuees in indoor spaces are insufficient. According to the latest research, it has been suggested that the use of high frequency might be effective for identifying the location of evacuees indoors. Accordingly, in this paper, the authors intend to develop evacuation location recognition technology and fire evacuation guidance system using high-frequency and a smartphone. The entire system was developed, including an app server, evacuees location recognition unit, an evacuation route search, an output unit, and a speaker unit based on Wi-Fi communication. The experimental results proved the possibility of the effectiveness of the system in the fire situation data. It is expected that this study could be used as an essential study of a fire evacuation guidance system using high frequency data in case of fire.

A near control technology using high frequencies in audible frequency between smart devices

  • Chung, Myoungbeom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.8
    • /
    • pp.61-67
    • /
    • 2015
  • The existing methods for control between smart devices in near used Bluetooth, WiFi-Direct, or socket communication using Wi-Fi. However, those have a problem that can not use when operating system of each smart devices is different or when socket server is not working. In this paper, we proposed a new near control technology using High frequencies in audible frequency between smart devices to supplement the problem of existing methods. High frequencies use micro-phone and speaker of smart device and are a control signals that is combined high frequencies within 18kHz ~ 22kHz among audible frequency range. The proposed technology using High frequencies do not need any extra communication modules or socket servers and can use the most smart devices without operating system of devices. To evaluate the performance of the proposed technology, we developed a music play and music control application applied the proposed technology and tested a control experiment using the developed applications. The control success rate was 97% and recognition rate of surrounding people about using high frequencies was under 5%. Therefore, the proposed technology will be the useful technology to control between smart devices in near.

Self-powered wireless bus information and disaster information system based on Internet of Things (IoT) (사물인터넷 기반의 자가 전력을 이용한 무선 버스 정보 및 재난 정보 시스템)

  • Kim, Tae-Kook
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.1
    • /
    • pp.17-22
    • /
    • 2022
  • This paper is a study on the self-powered wireless bus information and disaster information system based on Internet of Things (IoT). The existing bus information system supplies power and communication by cable, which causes a problem of increased installation cost and limited installation site due to cable burial. To solve this problem, a self-powered wireless bus information and disaster information system was proposed. The proposed system provides bus arrival information. Furthermore, in the event of a disaster such as a natural disaster, it can also reduce confusion and damage by notifying the disaster information through the system's speaker. In this study, a self-powered system using a solar module was proposed. As data are transmitted and received through wireless WiFi or LTE, the installation cost can be reduced and the problem of installation location restrictions can be solved.

Multi transmission method of data among near smart devices using inaudible sound and wireless network

  • Chung, Myoungbeom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.83-90
    • /
    • 2015
  • In this paper, we propose a new method for multi transmission method of data among near smart devices. Existing methods require the use of an extra application service where the operating system differs between smart devices. In contrast, the proposed method makes use of the smart device's inner speaker and microphone to confirm the transmission signal. Then, real sharing data is transmitted via WiFi or LTE. Therefore, the proposed method overcomes operating system issues with existing methods. Besides, BUMP technology works in a similar way to the method we propose, it only supports one-to-one transmission. To evaluate the efficacy of the new method, we tested one-to-many data transmission in an experiment: the results showed a 96% success rate. As a result, we believe that the proposed method is an effective multi transmission method of data among near smart devices.