• 제목/요약/키워드: Whole-genome sequencing

검색결과 267건 처리시간 0.024초

In silico approaches to discover the functional impact of non-synonymous single nucleotide polymorphisms in selective sweep regions of the Landrace genome

  • Shin, Donghyun;Won, Kyung-Hye;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권12호
    • /
    • pp.1980-1990
    • /
    • 2018
  • Objective: The aim of this study was to discover the functional impact of non-synonymous single nucleotide polymorphisms (nsSNPs) that were found in selective sweep regions of the Landrace genome Methods: Whole-genome re-sequencing data were obtained from 40 pigs, including 14 Landrace, 16 Yorkshire, and 10 wild boars, which were generated with the Illumina HiSeq 2000 platform. The nsSNPs in the selective sweep regions of the Landrace genome were identified, and the impacts of these variations on protein function were predicted to reveal their potential association with traits of the Landrace breed, such as reproductive capacity. Results: Total of 53,998 nsSNPs in the mapped regions of pigs were identified, and among them, 345 nsSNPs were found in the selective sweep regions of the Landrace genome which were reported previously. The genes featuring these nsSNPs fell into various functional categories, such as reproductive capacity or growth and development during the perinatal period. The impacts of amino acid sequence changes by nsSNPs on protein function were predicted using two in silico SNP prediction algorithms, i.e., sorting intolerant from tolerant and polymorphism phenotyping v2, to reveal their potential roles in biological processes that might be associated with the reproductive capacity of the Landrace breed. Conclusion: The findings elucidated the domestication history of the Landrace breed and illustrated how Landrace domestication led to patterns of genetic variation related to superior reproductive capacity. Our novel findings will help understand the process of Landrace domestication at the genome level and provide SNPs that are informative for breeding.

Genome-Based Insights into the Thermotolerant Adaptations of Neobacillus endophyticus BRMEA1T

  • Lingmin Jiang;Ho Le Han;Yuxin Peng;Doeun Jeon;Donghyun Cho;Cha Young Kim;Jiyoung Lee
    • 식물병연구
    • /
    • 제29권3호
    • /
    • pp.321-329
    • /
    • 2023
  • The bacterium Neobacillus endophyticus BRMEA1T, isolated from the medicinal plant Selaginella involvens, known as its thermotolerant can grow at 50℃. To explore the genetic basis for its heat tolerance response and its potential for producing valuable natural compounds, the genomes of two thermotolerant and four mesophilic strains in the genus Neobacillus were analyzed using a bioinformatic software platform. The whole genome was annotated using RAST SEED and OrthVenn2, with a focus on identifying potential heattolerance-related genes. N. endophyticus BRMEA1T was found to possess more stress response genes compared to other mesophilic members of the genus, and it was the only strain that had genes for the synthesis of osmoregulated periplasmic glucans. This study sheds light on the potential value of N. endophyticus BRMEA1T, as it reveals the mechanism of heat resistance and the application of secondary metabolites produced by this bacterium through whole-genome sequencing and comparative analysis.

Complete Mitochondrial Genome and Phylogenetic Analysis for the Korean Field Mouse Apodemus peninsulae Found on Baengnyeong Island in South Korea

  • Jung A Kim;Hye Sook Jeon;Seung Min Lee;Hong Seomun;Junghwa An
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제4권2호
    • /
    • pp.69-71
    • /
    • 2023
  • The Korean field mouse, Apodemus peninsulae mitochondrial genome has previously been reported for mice obtained from mainland Korea and China. In this investigation the complete mitochondrial genome sequence for a mouse obtained from Baengnyeong Island (BI) in South Korea was determined using high-throughput whole-genome sequencing for the first time. The circular genome was determined to be 16,268 bp in length. It was found to be composed of a typical complement gene that encodes 13 protein subunits of enzymes involved in oxidative phosphorylation, two ribosomal RNAs, 22 transfer RNAs, and one control region. Phylogenetic analysis involved 13 amino acid sequences and demonstrated that the A. peninsulae genome from BI was more closely grouped with two Korean samples (HQ660074 and JN546584) than the Chinese (KP671850) sample. This study verified the evolutionary status of A. peninsulae inhabiting the BI at the molecular level, and could be a significant supplement to the genetic background.

Discovery of Gene Sources for Economic Traits in Hanwoo by Whole-genome Resequencing

  • Shin, Younhee;Jung, Ho-jin;Jung, Myunghee;Yoo, Seungil;Subramaniyam, Sathiyamoorthy;Markkandan, Kesavan;Kang, Jun-Mo;Rai, Rajani;Park, Junhyung;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권9호
    • /
    • pp.1353-1362
    • /
    • 2016
  • Hanwoo, a Korean native cattle (Bos taurus coreana), has great economic value due to high meat quality. Also, the breed has genetic variations that are associated with production traits such as health, disease resistance, reproduction, growth as well as carcass quality. In this study, next generation sequencing technologies and the availability of an appropriate reference genome were applied to discover a large amount of single nucleotide polymorphisms (SNPs) in ten Hanwoo bulls. Analysis of whole-genome resequencing generated a total of 26.5 Gb data, of which 594,716,859 and 592,990,750 reads covered 98.73% and 93.79% of the bovine reference genomes of UMD 3.1 and Btau 4.6.1, respectively. In total, 2,473,884 and 2,402,997 putative SNPs were discovered, of which 1,095,922 (44.3%) and 982,674 (40.9%) novel SNPs were discovered against UMD3.1 and Btau 4.6.1, respectively. Among the SNPs, the 46,301 (UMD 3.1) and 28,613 SNPs (Btau 4.6.1) that were identified as Hanwoo-specific SNPs were included in the functional genes that may be involved in the mechanisms of milk production, tenderness, juiciness, marbling of Hanwoo beef and yellow hair. Most of the Hanwoo-specific SNPs were identified in the promoter region, suggesting that the SNPs influence differential expression of the regulated genes relative to the relevant traits. In particular, the non-synonymous (ns) SNPs found in CORIN, which is a negative regulator of Agouti, might be a causal variant to determine yellow hair of Hanwoo. Our results will provide abundant genetic sources of variation to characterize Hanwoo genetics and for subsequent breeding.

In silico approaches to identify the functional and structural effects of non-synonymous SNPs in selective sweeps of the Berkshire pig genome

  • Shin, Donghyun;Oh, Jae-Don;Won, Kyeong-Hye;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1150-1159
    • /
    • 2018
  • Objective: Non-synonymous single nucleotide polymorphisms (nsSNPs) were identified in Berkshire selective sweep regions and then were investigated to discover genetic nsSNP mechanisms that were potentially associated with Berkshire domestication and meat quality. We further used bioinformatics tools to predict damaging amino-acid substitutions in Berkshire-related nsSNPs. Methods: nsSNPs were examined in whole genome resequencing data of 110 pigs, including 14 Berkshire pigs, generated using the Illumina Hiseq2000 platform to identify variations that might affect meat quality in Berkshire pigs. Results: Total 65,550 nsSNPs were identified in the mapped regions; among these, 319 were found in Berkshire selective-sweep regions reported in a previous study. Genes encompassing these nsSNPs were involved in lipid metabolism, intramuscular fatty-acid deposition, and muscle development. The effects of amino acid change by nsSNPs on protein functions were predicted using sorting intolerant from tolerant and polymorphism phenotyping V2 to reveal their potential roles in biological processes that may correlate with the unique Berkshire meat-quality traits. Conclusion: Our nsSNP findings confirmed the history of Berkshire pigs and illustrated the effects of domestication on generic-variation patterns. Our novel findings, which are generally consistent with those of previous studies, facilitated a better understanding of Berkshire domestication. In summary, we extensively investigated the relationship between genomic composition and phenotypic traits by scanning for nsSNPs in large-scale whole-genome sequencing data.

Genomic Analysis of the Carrot Bacterial Blight Pathogen Xanthomonas hortorum pv. carotae in Korea

  • Mi-Hyun Lee;Sung-Jun Hong;Dong Suk Park;Hyeonheui Ham;Hyun Gi Kong
    • The Plant Pathology Journal
    • /
    • 제39권4호
    • /
    • pp.409-416
    • /
    • 2023
  • Bacterial leaf blight of carrots caused by Xanthomonas hortorum pv. carotae (Xhc) is an important worldwide seed-borne disease. In 2012 and 2013, symptoms similar to bacterial leaf blight were found in carrot farms in Jeju Island, Korea. The phenotypic characteristics of the Korean isolation strains were similar to the type strain of Xhc. Pathogenicity showed symptoms on the 14th day after inoculation on carrot plants. Identification by genetic method was multi-position sequencing of the isolated strain JJ2001 was performed using four genes (danK, gyrB, fyuA, and rpoD). The isolated strain was confirmed to be most similar to Xhc M081. Furthermore, in order to analyze the genetic characteristics of the isolated strain, whole genome analysis was performed through the next-generation sequencing method. The draft genome size of JJ2001 is 5,443,372 bp, which contains 63.57% of G + C and has 4,547 open reading frames. Specifically, the classification of pathovar can be confirmed to be similar to that of the host lineage. Plant pathogenic factors and determinants of the majority of the secretion system are conserved in strain JJ2001. This genetic information enables detailed comparative analysis in the pathovar stage of pathogenic bacteria. Furthermore, these findings provide basic data for the distribution and diagnosis of Xanthomonas hortorum pv. carotae, a major plant pathogen that infects carrots in Korea.

Genomic Analysis of the Xanthoria elegans and Polyketide Synthase Gene Mining Based on the Whole Genome

  • Xiaolong Yuan;Yunqing Li;Ting Luo;Wei Bi;Jiaojun Yu;Yi Wang
    • Mycobiology
    • /
    • 제51권1호
    • /
    • pp.36-48
    • /
    • 2023
  • Xanthoria elegans is a lichen symbiosis, that inhabits extreme environments and can absorb UV-B. We reported the de novo sequencing and assembly of X. elegans genome. The whole genome was approximately 44.63 Mb, with a GC content of 40.69%. Genome assembly generated 207 scaffolds with an N50 length of 563,100 bp, N90 length of 122,672 bp. The genome comprised 9,581 genes, some encoded enzymes involved in the secondary metabolism such as terpene, polyketides. To further understand the UV-B absorbing and adaptability to extreme environments mechanisms of X. elegans, we searched the secondary metabolites genes and gene-cluster from the genome using genome-mining and bioinformatics analysis. The results revealed that 7 NR-PKSs, 12 HR-PKSs and 2 hybrid PKS-PKSs from X. elegans were isolated, they belong to Type I PKS (T1PKS) according to the domain architecture; phylogenetic analysis and BGCs comparison linked the putative products to two NR-PKSs and three HR-PKSs, the putative products of two NR-PKSs were emodin xanthrone (most likely parietin) and mycophelonic acid, the putative products of three HR-PKSs were soppilines, (+)-asperlin and macrolactone brefeldin A, respectively. 5 PKSs from X. elegans build a correlation between the SMs carbon skeleton and PKS genes based on the domain architecture, phylogenetic and BGC comparison. Although the function of 16 PKSs remains unclear, the findings emphasize that the genes from X. elegans represent an unexploited source of novel polyketide and utilization of lichen gene resources.

Exonic copy number variations in rare genetic disorders

  • Man Jin Kim
    • Journal of Genetic Medicine
    • /
    • 제20권2호
    • /
    • pp.46-51
    • /
    • 2023
  • Exonic copy number variation (CNV), involving deletions and duplications at the gene's exon level, presents challenges in detection due to their variable impact on gene function. The study delves into the complexities of identifying large CNVs and investigates less familiar but recurrent exonic CNVs, notably enriched in East Asian populations. Examining specific cases like DRC1, STX16, LAMA2, and CFTR highlights the clinical implications and prevalence of exonic CNVs in diverse populations. The review addresses diagnostic challenges, particularly for single exon alterations, advocating for a strategic, multi-method approach. Diagnostic methods, including multiplex ligation-dependent probe amplification, droplet digital PCR, and CNV screening using next-generation sequencing data, are discussed, with whole genome sequencing emerging as a powerful tool. The study underscores the crucial role of ethnic considerations in understanding specific CNV prevalence and ongoing efforts to unravel subtle variations. The ultimate goal is to advance rare disease diagnosis and treatment through ethnically-specific therapeutic interventions.

Review of Genetic Diagnostic Approaches for Glanzmann Thrombasthenia in Korea

  • Shim, Ye Jee
    • Journal of Interdisciplinary Genomics
    • /
    • 제3권2호
    • /
    • pp.41-46
    • /
    • 2021
  • Inherited platelet function disorders (IPFDs) are a disease group of heterogeneous bleeding disorders associated with congenital defects of platelet functions. Normal platelets essential role for primary hemostasis by adhesion, activation, secretion of granules, aggregation, and procoagulant activity of platelets. The accurate diagnosis of IPFDs is challenging due to unavailability of important testing methods, including light transmission aggregometry and flow cytometry, in several medical centers in Korea. Among several IPFDs, Glanzmann thrombasthenia (GT) is a most representative IPFD and is relatively frequently found compare to the other types of rarer IPFDs. GT is an autosomal recessive disorder caused by mutations of ITGA2B or ITGB3. There are quantitative or qualitative defects of the GPIIb/IIIa complex in platelet, which is the binding receptor for fibrinogen, von Willbrand factor, and fibronectin in GT patients. Therefore, patients with GT have normal platelet count and normal platelet morphology, but they have severely decreased platelet aggregation. Thus, GT patients have a very severe hemorrhagic phenotypes that begins at a very early age and persists throughout life. In this article, the general contents about platelet functions and respective IPFDs, the overall contents of GT, and the current status of genetic diagnosis of GT in Korea will be reviewed.

Complete Genome Sequence of Bifidobacterium longum subsp. longum DS0950 Isolated from Infant Feces with Obesity-Ameliorating Effects

  • Hana Jo;Yong-Sik Kim;Doo-Sang Park
    • 한국미생물·생명공학회지
    • /
    • 제52권2호
    • /
    • pp.218-220
    • /
    • 2024
  • Bifidobacterium longum subsp. longum DS0950 (B. longum DS0950)은 신생아 분변에서 분리되었으며 비만 개선 효능이 보고되었다. B. longum DS0950 전장유전체 서열은 PacBio RS II platforms을 이용하여 확보하였으며, 유전체의 크기는 2,433,092 bp의 단일 contig로 분석이 되었다. B. longum DS0950 균주는 박테리오신의 합성에 관련된 유전자와, ribulose-5-phosphate로부터 xylitol 생산할 수 있는 일련의 유전자를 보유하고 있다.