• Title/Summary/Keyword: Whole-genome sequence

Search Result 220, Processing Time 0.028 seconds

Genome Sequencing and Genome-Wide Identification of Carbohydrate-Active Enzymes (CAZymes) in the White Rot Fungus Flammulina fennae

  • Lee, Chang-Soo;Kong, Won-Sik;Park, Young-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.300-312
    • /
    • 2018
  • Whole-genome sequencing of the wood-rotting fungus, Flammulina fennae, was carried out to identify carbohydrate-active enzymes (CAZymes). De novo genome assembly (31 kmer) of short reads by next-generation sequencing revealed a total genome length of 32,423,623 base pairs (39% GC). A total of 11,591 gene models in the assembled genome sequence of F. fennae were predicted by ab initio gene prediction using the AUGUSTUS tool. In a genome-wide comparison, 6,715 orthologous groups shared at least one gene with F. fennae and 10,667 (92%) of 11,591 genes for F. fennae proteins had orthologs among the Dikarya. Additionally, F. fennae contained 23 species-specific genes, of which 16 were paralogous. CAZyme identification and annotation revealed 513 CAZymes, including 82 auxiliary activities, 220 glycoside hydrolases, 85 glycosyltransferases, 20 polysaccharide lyases, 57 carbohydrate esterases, and 45 carbohydrate binding-modules in the F. fennae genome. The genome information of F. fennae increases the understanding of this basidiomycete fungus. CAZyme gene information will be useful for detailed studies of lignocellulosic biomass degradation for biotechnological and industrial applications.

Complete genome sequence of Lactiplantibacillus plantarum ST, a potential probiotic strain with antibacterial properties

  • Yang, Shujuan;Deng, Chenglin;Li, Yao;Li, Weicheng;Wu, Qiong;Sun, Zhihong;Cao, Zhenhui;Lin, Qiuye
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.183-186
    • /
    • 2022
  • Lactiplantibacillus plantarum (L. plantarum) ST was isolated from De'ang pickled tea in Yunnan Province, China. The genomes of strain ST were fully sequenced and analyzed using the PacBio RS II sequencing system. Our previous study has shown that L. plantarum ST is a potential probiotic strain. It had strong tolerance in the simulated artificial gastrointestinal tract, and in the antagonism tests, this strain showed strong antibacterial activity. Therefore, as a probiotic, it may be used in animal breeding. L. plantarum ST genome was composed of 1 circular chromosome and 7 plasmids. The length of the whole genome was 3320817 bp, and the annular chromosome size was 3058984 bp, guanine + cytosine (G ± C) content (%) was 44.76%, which contained 2945 protein-coding sequences (CDS). This study will contribute to a further comprehensive understanding of L. Plantarum ST at the genomic level and provide a theoretical basis for its future application in animal breeding.

Genome-Wide SNP Calling Using Next Generation Sequencing Data in Tomato

  • Kim, Ji-Eun;Oh, Sang-Keun;Lee, Jeong-Hee;Lee, Bo-Mi;Jo, Sung-Hwan
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.36-42
    • /
    • 2014
  • The tomato (Solanum lycopersicum L.) is a model plant for genome research in Solanaceae, as well as for studying crop breeding. Genome-wide single nucleotide polymorphisms (SNPs) are a valuable resource in genetic research and breeding. However, to do discovery of genome-wide SNPs, most methods require expensive high-depth sequencing. Here, we describe a method for SNP calling using a modified version of SAMtools that improved its sensitivity. We analyzed 90 Gb of raw sequence data from next-generation sequencing of two resequencing and seven transcriptome data sets from several tomato accessions. Our study identified 4,812,432 non-redundant SNPs. Moreover, the workflow of SNP calling was improved by aligning the reference genome with its own raw data. Using this approach, 131,785 SNPs were discovered from transcriptome data of seven accessions. In addition, 4,680,647 SNPs were identified from the genome of S. pimpinellifolium, which are 60 times more than 71,637 of the PI212816 transcriptome. SNP distribution was compared between the whole genome and transcriptome of S. pimpinellifolium. Moreover, we surveyed the location of SNPs within genic and intergenic regions. Our results indicated that the sufficient genome-wide SNP markers and very sensitive SNP calling method allow for application of marker assisted breeding and genome-wide association studies.

A Role of NMR Spectroscopy in the Post-genomic Era

  • Lee, Weontae
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.20-20
    • /
    • 2003
  • The success of genome project brought us a vast amount of sequence information about whole genes for some species. In order to get functional understanding of un-annotated genes, a number of frontiers in structural biology proposed a new paradigm for structural research on the basis of given information. Structural biologists believe that the whole characters of the living cells come from the protein functions, which could be regulated by three-dimensional protein structures.

  • PDF

Whole genome sequence of Staphylococcus aureus strain RMI-014804 isolated from pulmonary patient sputum via next-generation sequencing technology

  • Ayesha, Wisal;Asad Ullah;Waheed Anwar;Carlos M. Morel;Syed Shah Hassan
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.34.1-34.10
    • /
    • 2023
  • Nosocomial infections, commonly referred to as healthcare-associated infections, are illnesses that patients get while hospitalized and are typically either not yet manifest or may develop. One of the most prevalent nosocomial diseases in hospitalized patients is pneumonia, among the leading causes of mortality and morbidity. Viral, bacterial, and fungal pathogens cause pneumonia. More severe introductions commonly included Staphylococcus aureus, which is at the top of bacterial infections, per World Health Organization reports. The staphylococci, S. aureus, strain RMI-014804, mesophile, on-sporulating, and non-motile bacterium, was isolated from the sputum of a pulmonary patient in Pakistan. Many characteristics of S. aureus strain RMI-014804 have been revealed in this paper, with complete genome sequence and annotation. Our findings indicate that the genome is a single circular 2.82 Mbp long genome with 1,962 protein-coding genes, 15 rRNA, 49 tRNA, 62 pseudogenes, and a GC content of 28.76%. As a result of this genome sequencing analysis, researchers will fully understand the genetic and molecular basis of the virulence of the S. aureus bacteria, which could help prevent the spread of nosocomial infections like pneumonia. Genome analysis of this strain was necessary to identify the specific genes and molecular mechanisms that contribute to its pathogenicity, antibiotic resistance, and genetic diversity, allowing for a more in-depth investigation of its pathogenesis to develop new treatments and preventive measures against infections caused by this bacterium.

Flanking Sequence and Copy-Number Analysis of Transformation Events by Integrating Next-Generation Sequencing Technology with Southern Blot Hybridization

  • Qin, Yang;Woo, Hee-Jong;Shin, Kong-Sik;Lim, Myung-Ho;Cho, Hyun-Suk;Lee, Seong-Kon
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.269-281
    • /
    • 2017
  • With the continual development of genetically modified (GM) crops, it has become necessary to develop detailed and effective molecular characterization methods to select candidate events from a large pool of transformation events. Relative to traditional molecular analysis methods such as the polymerase chain reaction (PCR) and Southern blot hybridization, next generation sequencing (NGS) technology for whole-genome sequencing of complex crop genomes had proven comparatively useful for in-depth molecular characterization. In this study, four transformation events, including one in Bacillus thuringiensis (Bt)-resistant rice, one in resveratrol-producing rice, and two in beta-carotene-enhanced soybeans, were selected for molecular characterization. To merge NGS analysis and Southern blot-hybridization results, we confirmed the transgene insertion sites, insertion construction, and insertion numbers of these four transformation events. In addition, the read-coverage depth assessed by NGS analysis for inserted genes might provide consistent results in terms of inserted T-DNA numbers in case of complex insertion structures and highly duplicated donor genomes; however, PCR-based methods can produce incorrect conclusions. Our combined method provides an effective and complete analytical approach for whole-genome visual inspection of transformation events that require biosafety assessment.

Application of genotyping-by-sequencing (GBS) in plant genome using bioinformatics pipeline

  • Lee, Yun Gyeong;Kang, Chon-Sik;Kim, Changsoo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.58-58
    • /
    • 2017
  • The advent of next generation sequencing technology has elicited plenty of sequencing data available in agriculturally relevant plant species. For most crop species, it is too expensive to obtain the whole genome sequence data with sufficient coverage. Thus, many approaches have been developed to bring down the cost of NGS. Genotyping-by-sequencing (GBS) is a cost-effective genotyping method for complex genetic populations. GBS can be used for the analysis of genomic selection (GS), genome-wide association study (GWAS) and constructing haplotype and genetic linkage maps in a variety of plant species. For efficiently dealing with plant GBS data, the TASSEL-GBS pipeline is one of the most popular choices for many researchers. TASSEL-GBS is JAVA based a software package to obtain genotyping data from raw GBS sequences. Here, we describe application of GBS and bioinformatics pipeline of TASSEL-GBS for analyzing plant genetics data.

  • PDF

Genome-based identification of strain KCOM 1265 isolated from subgingival plaque at the species level

  • Park, Soon-Nang;Lim, Yun Kyong;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.45 no.2
    • /
    • pp.70-75
    • /
    • 2020
  • The aim of this study was to identify strain KCOM 1265 isolated from subgingival plaque at the species level by comparing 16S ribosomal RNA gene (16S rDNA) and genome sequences. The whole genome of strain KCOM 1265 was extracted using the phenol-chloroform extraction method. 16S rDNA was amplified using polymerase chain reaction and sequenced using the dideoxy chain termination method. Pairwise genome comparison was performed using average nucleotide identity (ANI) and genome-to-genome distance (GGD) analyses. The data showed that the percent similarity of 16S rDNA sequence of strain KCOM 1265 was 99.6% as compared with those of Fusobacterium polymorphum ATCC 10953T and Fusobacterium hwasookii KCOM 1249T. The ANI values of strain KCOM 1265 with F. polymorphum ATCC 10953T and F. hwasookii KCOM 1249T were 95.8% and 93.0%, respectively. The GGD values of strain KCOM 1265 with F. polymorphum ATCC 10953T and F. hwasookii KCOM 1249T were 63.9% and 49.6%, respectively. These results indicate that strain KCOM 1265 belongs to F. polymorphum.

Genome-Based Insights into the Thermotolerant Adaptations of Neobacillus endophyticus BRMEA1T

  • Lingmin Jiang;Ho Le Han;Yuxin Peng;Doeun Jeon;Donghyun Cho;Cha Young Kim;Jiyoung Lee
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.321-329
    • /
    • 2023
  • The bacterium Neobacillus endophyticus BRMEA1T, isolated from the medicinal plant Selaginella involvens, known as its thermotolerant can grow at 50℃. To explore the genetic basis for its heat tolerance response and its potential for producing valuable natural compounds, the genomes of two thermotolerant and four mesophilic strains in the genus Neobacillus were analyzed using a bioinformatic software platform. The whole genome was annotated using RAST SEED and OrthVenn2, with a focus on identifying potential heattolerance-related genes. N. endophyticus BRMEA1T was found to possess more stress response genes compared to other mesophilic members of the genus, and it was the only strain that had genes for the synthesis of osmoregulated periplasmic glucans. This study sheds light on the potential value of N. endophyticus BRMEA1T, as it reveals the mechanism of heat resistance and the application of secondary metabolites produced by this bacterium through whole-genome sequencing and comparative analysis.

Assessment of Erythrobacter Species Diversity through Pan-Genome Analysis with Newly Isolated Erythrobacter sp. 3-20A1M

  • Cho, Sang-Hyeok;Jeong, Yujin;Lee, Eunju;Ko, So-Ra;Ahn, Chi-Yong;Oh, Hee-Mock;Cho, Byung-Kwan;Cho, Suhyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.601-609
    • /
    • 2021
  • Erythrobacter species are extensively studied marine bacteria that produce various carotenoids. Due to their photoheterotrophic ability, it has been suggested that they play a crucial role in marine ecosystems. It is essential to identify the genome sequence and the genes of the species to predict their role in the marine ecosystem. In this study, we report the complete genome sequence of the marine bacterium Erythrobacter sp. 3-20A1M. The genome size was 3.1 Mbp and its GC content was 64.8%. In total, 2998 genetic features were annotated, of which 2882 were annotated as functional coding genes. Using the genetic information of Erythrobacter sp. 3-20A1M, we performed pan-genome analysis with other Erythrobacter species. This revealed highly conserved secondary metabolite biosynthesis-related COG functions across Erythrobacter species. Through subsequent secondary metabolite biosynthetic gene cluster prediction and KEGG analysis, the carotenoid biosynthetic pathway was proven conserved in all Erythrobacter species, except for the spheroidene and spirilloxanthin pathways, which are only found in photosynthetic Erythrobacter species. The presence of virulence genes, especially the plant-algae cell wall degrading genes, revealed that Erythrobacter sp. 3-20A1M is a potential marine plant-algae scavenger.