• 제목/요약/키워드: Whole genome

검색결과 589건 처리시간 0.026초

Epigenomics는 무엇이며 식품산업에 어떻게 응용될 것인가? (What is Epigenomics and how it will be applied to the food industry?)

  • 유진영;한가은;이종훈
    • 식품과학과 산업
    • /
    • 제50권1호
    • /
    • pp.11-15
    • /
    • 2017
  • Epigenomics is a study that analyzes and quantifies various epigenetic alterations that affect gene expressions in cells from the viewpoint of collective characteristics on biological molecular pools. DNA methylation and histone modification in cells can induce the epigenetic alterations. Especially, epigenetic alterations influenced by external factors as ingested foods and other environmental factors have been examined in the whole genome regions, which provide accumulated data of altered regions or patterns of global genome, Statistical analyses of these regions or patterns enables us to correlate epigenomic changes with human diseases in the whole genome region. Finding meaningful regulators is a major concern of epigenomic research in recent years, and these results will give the food industry an important clue to future food

차세대 염기서열분석을 이용한 유전성 대사질환의 유전진단 (Genetic Diagnosis of Inherited Metabolic Disorders using Next-Generation Sequencing)

  • 기창석
    • 대한유전성대사질환학회지
    • /
    • 제23권2호
    • /
    • pp.1-7
    • /
    • 2023
  • 유전성 대사질환은 생화학적 대사 이상에 의해 발생하는 질환 군으로, 매우 다양할 뿐만 아니라 임상 양상이 서로 겹칠 수 있어 진단에 어려움을 겪을 수 있다. 과거에는 유전성 대사질환의 원인이 될 수 있는 유전자를 선정한 후 한 개씩 분석하는 방식으로 유전자 검사를 시행했다. 하지만, 최근에는 차세대 염기서열분석 기술이 발전함에 따라 유전성 대사질환과 관련된 수백-수천개의 유전자를 한꺼번에 분석하거나, 인간의 모든 유전자를 포함하는 엑솜/게놈 분석을 시행한 후 원인 유전자를 찾는 방식으로 유전 진단의 패러다임이 바뀌고 있다. 본 종설에서는 차세대 염기서열분석을 이용한 유전성 대사질환의 유전 진단 방법과 진단율 및 주의점 등을 살펴보고자 한다.

  • PDF

Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato

  • Rattana Pengproh;Thanwanit Thanyasiriwat;Kusavadee Sangdee;Juthaporn Saengprajak;Praphat Kawicha;Aphidech Sangdee
    • The Plant Pathology Journal
    • /
    • 제39권5호
    • /
    • pp.430-448
    • /
    • 2023
  • Recently, strategies for controlling Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of Fusarium wilt of tomato, focus on using effective biocontrol agents. In this study, an analysis of the biocontrol and plant growth promoting (PGP) attributes of 11 isolates of loamy soil Bacillus spp. has been conducted. Among them, the isolates B.PNR1 and B.PNR2 inhibited the mycelial growth of Fol by inducing abnormal fungal cell wall structures and cell wall collapse. Moreover, broad-spectrum activity against four other plant pathogenic fungi, F. oxysporum f. sp. cubense race 1 (Foc), Sclerotium rolfsii, Colletotrichum musae, and C. gloeosporioides were noted for these isolates. These two Bacillus isolates produced indole acetic acid, phosphate solubilization enzymes, and amylolytic and cellulolytic enzymes. In the pot experiment, the culture filtrate from B.PNR1 showed greater inhibition of the fungal pathogens and significantly promoted the growth of tomato plants more than those of the other treatments. Isolate B.PNR1, the best biocontrol and PGP, was identified as Bacillus stercoris by its 16S rRNA gene sequence and whole genome sequencing analysis (WGS). The WGS, through genome mining, confirmed that the B.PNR1 genome contained genes/gene cluster of a nonribosomal peptide synthetase/polyketide synthase, such as fengycin, surfactin, bacillaene, subtilosin A, bacilysin, and bacillibactin, which are involved in antagonistic and PGP activities. Therefore, our finding demonstrates the effectiveness of B. stercoris strain B.PNR1 as an antagonist and for plant growth promotion, highlighting the use of this microorganism as a biocontrol agent against the Fusarium wilt pathogen and PGP abilities in tomatoes.

High-quality draft genome and characterization of commercially potent probiotic Lactobacillus strains

  • Sulthana, Ayesha;Lakshmi, Suvarna G.;Madempudi, Ratna Sudha
    • Genomics & Informatics
    • /
    • 제17권4호
    • /
    • pp.43.1-43.5
    • /
    • 2019
  • Lactobacillus acidophilus UBLA-34, L. paracasei UBLPC-35, L. plantarum UBLP-40, and L. reuteri UBLRU-87 were isolated from different varieties of fermented foods. To determine the probiotic safety at the strain level, the whole genome of the respective strains was sequenced, assembled, and characterized. Both the core-genome and pan-genome phylogeny showed that L. reuteri was closest to L. plantarum than to L. acidophilus, which was closest to L. paracasei. The genomic analysis of all the strains confirmed the absence of genes encoding putative virulence factors, antibiotic resistance, and the plasmids.

Gene Microarray의 기본개념 (Basic Concept of Gene Microarray)

  • 황승용
    • 생물정신의학
    • /
    • 제8권2호
    • /
    • pp.203-207
    • /
    • 2001
  • The genome sequencing project has generated and will continue to generate enormous amounts of sequence data including 5 eukaryotic and about 60 prokaryotic genomes. Given this ever-increasing amounts of sequence information, new strategies are necessary to efficiently pursue the next phase of the genome project-the elucidation of gene expression patterns and gene product function on a whole genome scale. In order to assign functional information to the genome sequence, DNA chip(or gene microarray) technology was developed to efficiently identify the differential expression pattern of independent biological samples. DNA chip provides a new tool for genome expression analysis that may revolutionize many aspects of biotechnology including new drug discovery and disease diagnostics.

  • PDF

Characteristics of Microsatellites in the Transcript Sequences of the Laccaria bicolor Genome

  • Li, Shuxian;Zhang, Xinye;Yin, Tongming
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권3호
    • /
    • pp.474-479
    • /
    • 2010
  • In this paper, we analyzed the microsatellites in the transcript sequences of the whole Laccaria bicolor genome. Our results revealed that, apart from the triplet repeats, length diversification and richness of the detected microsatellites positively correlated with their repeat motif lengths, which were distinct from the variation trends observed for the transcriptional microsatellites in the genome of higher plants. We also compared the microsatellites detected in the genic regions and in the nongenic regions of the L. bicolor genome. Subsequently, SSR primers were designed for the transcriptional microsatellites in the L. bicolor genome. These SSR primers provide desirable genetic resources to the ectomycorrhizae community, and this study provides deep insight into the characteristics of the micro satellite sequences in the L. bicolor genome.

Genome-Wide Comparison of Carbohydrate-Active Enzymes (CAZymes) Repertoire of Flammulina ononidis

  • Park, Young-Jin;Kong, Won-Sik
    • Mycobiology
    • /
    • 제46권4호
    • /
    • pp.349-360
    • /
    • 2018
  • Whole-genome sequencing of Flammulina ononidis, a wood-rotting basidiomycete, was performed to identify genes associated with carbohydrate-active enzymes (CAZymes). A total of 12,586 gene structures with an average length of 2009 bp were predicted by the AUGUSTUS tool from a total 35,524,258 bp length of de novo genome assembly (49.76% GC). Orthologous analysis with other fungal species revealed that 7051 groups contained at least one F. ononidis gene. In addition, 11,252 (89.5%) of 12,586 genes for F. ononidis proteins had orthologs among the Dikarya, and F. ononidis contained 8 species-specific genes, of which 5 genes were paralogous. CAZyme prediction revealed 524 CAZyme genes, including 228 for glycoside hydrolases, 21 for polysaccharide lyases, 87 for glycosyltransferases, 61 for carbohydrate esterases, 87 with auxiliary activities, and 40 for carbohydrate-binding modules in the F. ononidis genome. This genome information including CAZyme repertoire will be useful to understand lignocellulolytic machinery of this white rot fungus F. ononidis.

Complete Genome Sequence of Escherichia coli - Specific Phage KFS-EC1 Isolated from a Slaughterhouse

  • Su-Hyeon Kim;Mi-Kyung Park
    • 한국미생물·생명공학회지
    • /
    • 제51권4호
    • /
    • pp.562-565
    • /
    • 2023
  • Escherichia coli-specific phage, KFS-EC1, was isolated and purified from a slaughterhouse. The complete genome of the phage was obtained using Illumina MiSeq platforms. Its assembled genome consisted of a single chromosome of 164,715 bp with a GC content of 40.5%. The phage genome contained 170 hypothetical and 101 functional ORFs, and exhibited orthologous average nucleotide identity values of >95% with other E. coli phages belonging to the family Straboviridae. Additionally, phylogenetic analysis revealed that KFS-EC1 was finally classified into the family Straboviridae of the genus Caudoviricetes. The genome has been deposited in GenBank under the accession number NC_055757.1.

Complete Genome Sequence of Bacillus subtilis NIB353 Isolated from Nuruk

  • Jeong-Ah Yoon;Se-Young Kwun;Eun-Hee Park;Myoung-Dong Kim
    • 한국미생물·생명공학회지
    • /
    • 제51권3호
    • /
    • pp.289-292
    • /
    • 2023
  • Thermotolerant Bacillus subtilis NIB353 was isolated from Nuruk, a traditional Korean fermentation starter. The complete B. subtilis NIB353 genome sequence was obtained using MinION and Illumina (MiSeq) platforms. The B. subtilis NIB353 genome sequence was 4,247,447 bp with a GC content of 43%. The B. subtilis NIB353 strain exhibited orthologous average nucleotide identity values of 98.39% and 98.38% with B. subtilis 168 and B. subtilis ATCC6051a, respectively. The genome has been deposited in GenBank under the accession number NZ_CP089148.1.

Genome Sequencing and Genome-Wide Identification of Carbohydrate-Active Enzymes (CAZymes) in the White Rot Fungus Flammulina fennae

  • Lee, Chang-Soo;Kong, Won-Sik;Park, Young-Jin
    • 한국미생물·생명공학회지
    • /
    • 제46권3호
    • /
    • pp.300-312
    • /
    • 2018
  • Whole-genome sequencing of the wood-rotting fungus, Flammulina fennae, was carried out to identify carbohydrate-active enzymes (CAZymes). De novo genome assembly (31 kmer) of short reads by next-generation sequencing revealed a total genome length of 32,423,623 base pairs (39% GC). A total of 11,591 gene models in the assembled genome sequence of F. fennae were predicted by ab initio gene prediction using the AUGUSTUS tool. In a genome-wide comparison, 6,715 orthologous groups shared at least one gene with F. fennae and 10,667 (92%) of 11,591 genes for F. fennae proteins had orthologs among the Dikarya. Additionally, F. fennae contained 23 species-specific genes, of which 16 were paralogous. CAZyme identification and annotation revealed 513 CAZymes, including 82 auxiliary activities, 220 glycoside hydrolases, 85 glycosyltransferases, 20 polysaccharide lyases, 57 carbohydrate esterases, and 45 carbohydrate binding-modules in the F. fennae genome. The genome information of F. fennae increases the understanding of this basidiomycete fungus. CAZyme gene information will be useful for detailed studies of lignocellulosic biomass degradation for biotechnological and industrial applications.