• 제목/요약/키워드: Whole cell clamp

검색결과 238건 처리시간 0.03초

Two Types of Voltage-activated Calcium Currents in Goldfish Horizontal Cells

  • Paik, Sun-Sook;Bai, Sun-Ho;Jung, Chang-Sub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권5호
    • /
    • pp.269-273
    • /
    • 2005
  • In horizontal cells (HCs) that were freshly dissociated from goldfish retina, two types of voltagedependent calcium currents ($I_{Ca}$) were recorded using a patch-clamping configuration: a transient type current and a sustained type current. The cell was held at -40 mV, and the prepulse step of -90 mV was applied before command pulse between -65 and +55 mV. The transient $Ca^{2+}$ current was activated by depolarization to around -50 mV from a prepulse voltage of -90 mV lasting at least 400 ms and reached a maximal value near -25 mV. On the other hand, the sustained $Ca^{2+}$ current was induced by pre-inactivation for less than 10 ms duration. Its activation started near -10 mV and peaked at +20 mV. $Co^{2+}$ (2 mM) suppressed both of these two components, but nifedipine ($20{\mu}M$), L-type $Ca^{2+}$ channel antagonist, blocked only the sustained current. Based on the activation voltage and the pharmacolog$I_{Ca}$l specificity, the sustained current appears to be similar to L-type $I_{Ca}$ and the transient type to T-type $I_{Ca}$. This study is the first to confirm that transient type $I_{Ca}$ together with the sustained one is present in HCs dissociated from goldfish retina.

Differential Functional Expression of Clotrimazole-sensitive $Ca^{2+}$-activated $K^+$ Current in Bal-17 and WEHI-231 Murine B Lymphocytes

  • Zheng, Haifeng;Ko, Jae-Hong;Nam, Joo-Hyun;Earm, Yung-E;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권1호
    • /
    • pp.19-24
    • /
    • 2006
  • The intermediate conductance $Ca^{2+}-activated$ $K^+$ channels (SK4, IKCa1) are present in lymphocytes, and their membrane expression is upregulated by various immunological stimuli. In this study, the activity of SK4 was compared between Bal-17 and WEHI-231 cell lines which represent mature and immature stages of murine B lymphocytes, respectively. The whole-cell patch clamp with high-$Ca^{2+}$ ($0.8{\mu}M$) KCl pipette solution revealed a voltage-independent $K^+$ current that was blocked by clotrimazole (1 mM), an SK4 blocker. The expression of mRNAs for SK4 was confirmed in both Bal-17 and WEHI-231 cells. The density of clotrimazole-sensitive SK4 current was significantly larger in Bal-17 than WEHI-231 cells ($-11.4{\pm}3.1$ Vs. $-5.7{\pm}1.15$ pA/pF). Also, the chronic stimulation of B cell receptors (BCR) by BCR-ligation (anti-IgM Ab, $3{\mu}g$/ml, 8∼12 h) significantly upregulated the amplitude of clotrimazolesensitive current from $-11.4{\pm}3.1$ to $-53.1{\pm}8.6$ pA/pF in Bal-17 cells. In WEHI-231 cells, the effect of BCR-ligation was significantly small ($-5.7{\pm}1.15$ to $-9.0{\pm}1.00$ pA/pF). The differential expression and regulation by BCR-ligation might reflect functional changes in the maturation of B lymphocytes.

Gardenia jasminoides extract and its constituent, genipin, inhibit activation of CD3/CD28 co-stimulated CD4+ T cells via ORAI1 channel

  • Kim, Hyun Jong;Nam, Yu Ran;Woo, JooHan;Kim, Woo Kyung;Nam, Joo Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권4호
    • /
    • pp.363-372
    • /
    • 2020
  • Gardenia jasminoides (GJ) is a widely used herbal medicine with anti-inflammatory properties, but its effects on the ORAI1 channel, which is important in generating intracellular calcium signaling for T cell activation, remain unknown. In this study, we investigated whether 70% ethanolic GJ extract (GJEtOH) and its subsequent fractions inhibit ORAI1 and determined which constituents contributed to this effect. Whole-cell patch clamp analysis revealed that GJEtOH (64.7% ± 3.83% inhibition at 0.1 mg/ml) and all its fractions showed inhibitory effects on the ORAI1 channel. Among the GJ fractions, the hexane fraction (GJHEX, 66.8% ± 9.95% at 0.1 mg/ml) had the most potent inhibitory effects in hORAI1-hSTIM1 co-transfected HEK293T cells. Chemical constituent analysis revealed that the strong ORAI1 inhibitory effect of GJHEX was due to linoleic acid, and in other fractions, we found that genipin inhibited ORAI1. Genipin significantly inhibited IORAI1 and interleukin-2 production in CD3/CD28-stimulated Jurkat T lymphocytes by 35.9% ± 3.02% and 54.7% ± 1.32% at 30 μM, respectively. Furthermore, the same genipin concentration inhibited the proliferation of human primary CD4+ T lymphocytes stimulated with CD3/CD28 antibodies by 54.9% ± 8.22%, as evaluated by carboxyfluorescein succinimidyl ester assay. Our findings suggest that genipin may be one of the active components of GJ responsible for T cell suppression, which is partially mediated by activation of the ORAI1 channel. This study helps us understand the mechanisms of GJ in the treatment of inflammatory diseases.

Roles of Nitric Oxide in Vestibular Compensation

  • Jeong, Han-Seong;Jun, Jae-Yeoul;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권2호
    • /
    • pp.73-77
    • /
    • 2003
  • The effects of nitric oxide on the vestibular function recovery following unilateral labyrinthectomy (UL) were studied. Sprague-Dawley male rats, treated with nitric oxide liberating agent sodium nitroprusside (SNP) and NOS inhibitor $N^G$-nitro-L-arginine methyl ester (L-NAME), were subjected to destruction of the unilateral vestibular apparatus, and then spontaneous nystagmus was observed in the rat. To explore the effects of nitric oxide on the neuronal excitability, whole cell patch clamp technique was applied on isolated medial vestibular nuclear neurons. The frequency of spontaneous nystagmus in SNP treated rats was lesser than that of spontaneous nystagmus in control animals. In contrast, pre-UL treatment with L-NAME resulted in a significant increase in spontaneous nystagmus frequency. In addition, SNP increased the frequency of spontaneous action potential in isolated medial vestibular nuclear neurons. Potassium currents of the vestibular nuclear neurons were inhibited by SNP. After blockade of calcium dependent potassium currents by high EGTA (11 mM) in a pipette solution, SNP did not inhibit outward potassium currents. 1H-[1,2,4] oxadiazolo [4,3-a] quinozalin-1-one (ODQ), a specific inhibitor of soluble guanylyl cyclase, inhibited the effects of SNP on the spontaneous firing and the potassium current. These results suggest that nitric oxide after unilateral labyrinthectomy would help to facilitate vestibular compensation by inhibiting calcium-dependent potassium currents through increasing intracellular cGMP, and consequently would increase excitability in ipsilateral vestibular nuclear neurons.

Nitric Oxide Modulation of GABAergic Synaptic Transmission in Mechanically Isolated Rat Auditory Cortical Neurons

  • Lee, Jong-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권6호
    • /
    • pp.461-467
    • /
    • 2009
  • The auditory cortex (A1) encodes the acquired significance of sound for the perception and interpretation of sound. Nitric oxide (NO) is a gas molecule with free radical properties that functions as a transmitter molecule and can alter neural activity without direct synaptic connections. We used whole-cell recordings under voltage clamp to investigate the effect of NO on spontaneous GABAergic synaptic transmission in mechanically isolated rat auditory cortical neurons preserving functional presynaptic nerve terminals. GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) in the A1 were completely blocked by bicuculline. The NO donor, S-nitroso-N-acetylpenicillamine (SNAP), reduced the GABAergic sIPSC frequency without affecting the mean current amplitude. The SNAP-induced inhibition of sIPSC frequency was mimicked by 8-bromoguanosine cyclic 3',5'-monophosphate, a membrane permeable cyclic-GMP analogue, and blocked by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a specific NO scavenger. Blockade of presynaptic $K^+$ channels by 4-aminopyridine, a $K^+$ channel blocker, increased the frequencies of GABAergic sIPSCs, but did not affect the inhibitory effects of SNAP. However, blocking of presynaptic $Ca^{2+}$ channels by $Cd^{2+}$, a general voltage-dependent $Ca^{2+}$ channel blocker, decreased the frequencies of GABAergic sIPSCs, and blocked SNAP-induced reduction of sIPSC frequency. These findings suggest that NO inhibits spontaneous GABA release by activation of cGMP-dependent signaling and inhibition of presynaptic $Ca^{2+}$ channels in the presynaptic nerve terminals of A1 neurons.

The Excitatory Mechanism of Substance P in the Antral Circular Muscle of Guinea Pig Stomach

  • Jun, Jae-Yeoul;Kim, Sung-Joon;Choi, Youn-Baik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • 제28권1호
    • /
    • pp.51-59
    • /
    • 1994
  • This study was carried out to elucidate the excitatory mechanisms of Substance P in the antral circular muscle, using isometric contraction recording, conventional microelectrode method and whole-cell patch clamp technique. Substance P produced tonic and phasic contractions in a dose-dependent manner and depolarized membrane potential with increased amplitude of slow waves in muscle strips. Voltage-dependent $Ca^{2+}$ currents were increased by the application of Substance P from a holding potential of -60mV to 50mV in 10mV steps and this effect was blocked by the addition of an antagonist. Also Substance P increased transient and spontaneous oscillatory $K^+$ outward currents. The enhanced outward currents were abolished by apamin in dispersed single cells. These results suggest that the depolarization of membrane potential by Substance P activates voltage-dependent $Ca^{2+}$ channels, which represents an excitatory response in the antral circular muscle and led to an increase in $Ca^{2+}\;activated\;K^+\;currents$.

  • PDF

세포 밖 2가 양이온이 과분극에 의해 활성화되는 전류($I_h$)에 미치는 영향 (Effects of Extacellular Divalent Cations on the Hyperpolarization-activated Currents in Rat Dorsal Root Ganglion Neurons)

  • 곽지연
    • 약학회지
    • /
    • 제56권2호
    • /
    • pp.108-115
    • /
    • 2012
  • The hyperpolarization-activated current ($I_h$) is an inward cation current activated by hyperpolarization of the membrane potential and plays a role as an important modulator of action potential firing frequency in many excitable cells. In the present study we investigated the effects of extracellular divalent cations on $I_h$ in dorsal root ganglion (DRG) neurons using whole-cell voltage clamp technique. $I_h$ was slightly increased in $Ca^{2+}$-free bath solution. BAPTA-AM did not change the amplitudes of $I_h$. Amplitudes of $I_h$ were decreased by $Ca^{2+}$, $Mg^{2+}$ and $Ba^{2+}$ dose-dependently and voltage-independently. Inhibition magnitudes of $I_h$ by external divalent cations were partly reversed by the concomitant increase of extracellular $K^+$ concentration. Reversal potential of $I_h$ was significantly shifted by $Ba^{2+}$ and $V_{1/2}$ was significantly affected by the changes of extracellular $Ca^{2+}$ concentrations. These results suggest that $I_h$ is inhibited by extracellular divalent cations ($Ca^{2+}$, $Mg^{2+}$ and $Ba^{2+}$) by interfering ion influxes in cultured rat DRG neurons.

미각계에서 산화질소의 역할과 산화질소 합성효소의 분포 (ROLE OF NITRIC OXIDE AND DISTRIBUTION OF NITRIC OXIDE SYNTHASE IN THE GUSTATORY SYSTEM)

  • 김영재;김원재;유선열
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제26권3호
    • /
    • pp.262-269
    • /
    • 2000
  • 말초 미각계 및 중추 미각계에서 산화질소의 역할과 그것의 합성효소의 존재는 아직 규명되지 않고 있다. 본 연구는 말초미각계인혀와 미각구심성신경 그리고 중추미각계인 뇌간고속핵에서 산화질소 합성효소의 분포 및 면역조직화학 방법과 고삭신경의 extracellular recording 뇌간고속핵 절편 whole cell patch 방법으로 조사하였다. 신경성 산화질소 합성효소는 혀의 전방에 위치한 심상유두와 유곽유두에 약하게 존재하였으며 미뢰주위와 결체조직에 존재하는 신경섬유 및 혀의 상피층에 풍부하게 존재하였다. 혀에 소금물을 가하여 증가된 고삭신경의 복합전위는 산화질소 유리제인 SNP에 의해 증가되었으며 내인성 산화질소 합성효소 억제제인 L-NAME와 soluble guanylate cyclase 억제제인 ODQ에 의해 억제되었다. 문측 연수에 존재한 문측 고속핵과 진전핵에서 nNOS가 풍부하게 존재하였다. 문측 고속핵의 신경들은 안정막전위가 $-48{\pm}52mV$였고 활동전위의 크기는 $74{\pm}11mV$였다. SNP에 의해 뇌간 고속핵 신경들이 탈분극되었으며 current clamp하였을 때 활동전압의 빈도가 증가하였다. 또한 SNP에 의한 문측 고속핵의 탈분극과 활동전압 빈도증가는 L-NAME와 ODQ에 의해 감소되었다. 이상의 실험결과는 산화질소 합성효소가 혀와 뇌간고속핵에 존재하며 여기서 유리된 내인성 산화질소가 말초성 및 중추성 미각기전에 관여하리라 사료된다.

  • PDF

The Inhibitory Effect of Opioid on the Hyperpolarization-Activated Cation Currents in Rat Substantia Gelatinosa Neurons

  • Seol, Geun-Hee;Kim, Jun;Cho, Sun-Hee;Kim, Won-Ki;Kim, Jong-Whan;Kim, Sang-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권5호
    • /
    • pp.373-380
    • /
    • 2001
  • The action of opioid on the hyperpolarization-activated cation current $(I_h)$ in substantia gelatinosa neurons were investigated by using whole-cell voltage-clamp recording in rat spinal brain slices. Hyperpolarizing voltage steps revealed slowly activating currents in a subgroup of neurons. The half-maximal activation and the reversal potential of the current were compatible to neuronal $I_h.$ DAMGO $(1\;{\mu}M),$ a selective- opioid agonist, reduced the amplitude of $I_h$ reversibly. This reduction was dose-dependent and was blocked by CTOP $(2\;{\mu}M),$ a selective ${\mu}-opioid$ antagonist. DAMGO shifted the voltage dependence of activation to more hyperpolarized potential. Cesium (1 mM) or ZD 7288 $(100\;{\mu}M)$ blocked $I_h$ and the currents inhibited by cesium, ZD 7288 and DAMGO shared a similar time and voltage dependence. These results suggest that activation of ${\mu}-opioid$ receptor by DAMGO can inhibit $I_h$ in a subgroup of rat substantia gelatinosa neurons.

  • PDF

Effects of Psoralen Derivatives on hKv1.5 Current

  • Eun Jae-Soon;Kim Dae-Keun;Leem Jae-Yoon;Lee Kyung-A;Park Hoon;Kwon Jin;Jung Young-Hoon;Kwak Yong-Geun
    • Biomolecules & Therapeutics
    • /
    • 제14권2호
    • /
    • pp.102-105
    • /
    • 2006
  • We examined the effects of psoralen derivatives on a rapidly activating delayed rectifier $K^+$ channel (hKv1.5) cloned from human heart and stably expressed in $Ltk^-$ cells. Using the whole cell configuration of the patch-clamp technique, we found that the five psoralen derivatives inhibited hKv1.5 current. Especially, 4-(2-Propenyloxy)-7H-furo[3,2-g][1]benzopyran-7-one (compound 5) was more potent than the inhibition of the hKv1.5 current of psoralen. The compound 5 inhibited the hKv1.5 current in a concentration-, time-, and voltage-dependent manner. These results suggest that the compound 5 is an excellent candidate as an antiarrhythmic drug for atrial fibrillation.