• Title/Summary/Keyword: Whole cell clamp

Search Result 238, Processing Time 0.021 seconds

Carbachol Regulates Pacemaker Activities in Cultured Interstitial Cells of Cajal from the Mouse Small Intestine

  • So, Keum Young;Kim, Sang Hun;Sohn, Hong Moon;Choi, Soo Jin;Parajuli, Shankar Prasad;Choi, Seok;Yeum, Cheol Ho;Yoon, Pyung Jin;Jun, Jae Yeoul
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.525-531
    • /
    • 2009
  • We studied the effect of carbachol on pacemaker currents in cultured interstitial cells of Cajal (ICC) from the mouse small intestine by muscarinic stimulation using a whole cell patch clamp technique and $Ca^{2+}$-imaging. ICC generated periodic pacemaker potentials in the current-clamp mode and generated spontaneous inward pacemaker currents at a holding potential of -70 mV. Exposure to carbachol depolarized the membrane and produced tonic inward pacemaker currents with a decrease in the frequency and amplitude of the pacemaker currents. The effects of carbachol were blocked by 1-dimethyl-4-diphenylacetoxypiperidinium, a muscarinic $M_3$ receptor antagonist, but not by methotramine, a muscarinic $M_2$ receptor antagonist. Intracellular $GDP-{\beta}-S$ suppressed the carbachol-induced effects. Carbachol-induced effects were blocked by external $Na^+$-free solution and by flufenamic acid, a non-selective cation channel blocker, and in the presence of thapsigargin, a $Ca^{2+}$-ATPase inhibitor in the endoplasmic reticulum. However, carbachol still produced tonic inward pacemaker currents with the removal of external $Ca^{2+}$. In recording of intracellular $Ca^{2+}$ concentrations using fluo 3-AM dye, carbachol increased intracellular $Ca^{2+}$ concentrations with increasing of $Ca^{2+}$ oscillations. These results suggest that carbachol modulates the pacemaker activity of ICC through the activation of non-selective cation channels via muscarinic $M_3$ receptors by a G-protein dependent intracellular $Ca^{2+}$ release mechanism.

Actions of Group I Metabotropic Glutamate Receptor Agonist on Synaptic Transmission and Ionic Currents in Rat Medial Vestibular Nucleus Neurons

  • Lee, Hae-In;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • v.34 no.4
    • /
    • pp.215-222
    • /
    • 2009
  • Medial vestibular nucleus (MVN) neurons are involved in the reflex control of the head and eyes, and in the recovery of vestibular function after the formation of peripheral vestibular lesions. In our present study, whole cell patch clamp recordings were carried out on MVN neurons in brainstem slices from neonatal rats to investigate the actions of a group I metabotropic glutamate receptor (mGluR) agonist upon synaptic transmission and ionic currents. Application of the mGluR I agonist (S)-3,5- dihydroxyphenylglycine (DHPG) increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs) but had no effect upon amplitude distributions. To then identify which of mGluR subtypes is responsible for the actions of DHPG in the MVN, we employed two novel subtype selective antagonists. (S)-(+)-$\alpha$-amino-a-methylbenzeneacetic acid (LY367385) is a potent competitive antagonist that is selective for mGluR1, whereas 2-methyl-6-(phenylethynyl)-pyridine (MPEP) is a potent noncompetitive antagonist of mGluR5. Both LY367385 and MPEP antagonized the DHPG-induced increase of mIPSCs, with the former being more potent. DHPG was also found to induce an inward current, which can be enhanced under depolarized conditions. This DHPG-induced current was reduced by both LY367385 and MPEP. The DHPG-induced inward current was also suppressed by the PLC blocker U-73122, the $IP_3$ receptor antagonist 2-APB, and following the depletion of the intracellular $Ca^{2+}$ pool by thapsigargin. These data suggest that the DHPG-induced inward current may be mainly regulated by the intracellular $Ca^{2+}$ store via the PLC-$IP_3$ pathway. In conclusion, mGluR I, via pre- and postsynaptic actions, may modulate the excitability of the MVN neurons.

Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons

  • Han, Jin-Eon;Cho, Jin-Hwa;Choi, In-Sun;Kim, Do-Yeon;Jang, Il-Sung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.215-223
    • /
    • 2017
  • The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent $K^+$ and $Ca^{2+}$ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent $K^+$currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent $K^+$ currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker $Cs^+$ (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent $Ca^{2+}$ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.

External pH Effects on Delayed Rectifier $K^+$ Currents of Small Dorsal Root Ganglion Neuron of Rat

  • Kim, Young-Ho;Hahn, Jung-Hyun;Lim, In-Ja;Chung, Sung-Kwon;Bang, Hyo-Weon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.165-172
    • /
    • 1998
  • Under certain pathophysiological conditions, such as inflammation and ischemia, the concentration of H^+$ ion in the tissue surrounding neurons is changed. Variations in H^+$ concentration are known to alter the conduction and/of the gating properties of several types of ion channels. Several types of K^+$ channels are modulated by pH. In this study, the whole cell configuration of the patch clamp technique has been applied to the recording of the responses of change of external pH on the delayed rectifier K^+$ current of cultured DRG neurons of rat. Outward K^+$ currents were examined in DRG cells, and the Charybdotoxin and Mn^{2+}$ could eliminate Ca^{2+}-dependent$ K^+$ currents from outward K^+$ currents. This outward K^+$ current was activated around -60 mV by step depolarizing pulses from holding potential -70 mV. Outward K^+$ currents were decreased by low external pH. Activation and steady-state inactivation curve were shifted to the right by acidification, while there was small change by alkalization. These results suggest that H^+$ could be alter the sensory modality by changing and modifying voltage-dependent K^+$ currents, which participated in repolarization.

  • PDF

Characteristics of NMDA- and Glutamate-Induced Currents in Primary Cultured Rat Hippocampal Neurons (일차 배양 해마신경세포에서 NMDA- 및 Glutamate- 유도전류의 특성)

  • Kim, Il-Man;Son, Eun-Ik;Kim, Dong-Won;Kim, In-Hong;Yim, Man-Bin;Song, Dae-Kyu;Park, Won-Kyun;Bae, Jae-Hun;Choi, Ha-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.11
    • /
    • pp.1429-1436
    • /
    • 2000
  • Objectives : This study was performed in cultured rat hippocampal neurons to investigate the acute electrophysiological features of ionotropic glutamate receptors which act as a major excitatory neurotransmitter in mammalian brain. Method : Glutamate receptor agonists were applied into the bath solution embedding in whole-cell patch-clamp recording of single hippocampal neuron. Results : In voltage-clamped at -60mV and the presence of 1mmol $Mg^{2+}$, extracellulary applied NMDA did not induce any inward current. Both the elimination of $Mg^{2+}$ and addition of glycine in bath, however, elicited a NMDAinduced inward current. $Mg^{2+}$ block current was increased gradually in more negative potentials from -30mV, showing a negative slope in I-V plot with $Mg^{2+}$. Glutamate-induced current represented an outward rectification. A non-NMDA receptor component occupied about 40% of glutamate-induced current in the voltage range of -80mV to +60mV. Conclusion : Present study suggests that glutamate activates acutely the non-NMDA receptors which induces an inward current in the level of resting membrane potential. This makes the membrane potential increase and can activate the NMDA receptors that permit calcium influx against $Mg^{2+}$ block. At the depolarized state of neuron, there may be recovery mechanisms of membrane potential to repolarize irrespective of voltage-dependent potassium channels in the hippocampal neurons.

  • PDF

Contractile and Electrical Responses of Guinea-pig Gastric Smooth Muscle to Bradykinin

  • Kim, Chul-Soo;Jun, Jae-Yeoul;Kim, Sung-Joon;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.29 no.2
    • /
    • pp.233-241
    • /
    • 1995
  • The nonapeptide bradykinin has been shown to exhibit an array of biological activities including relaxation/contraction of various smooth muscles. In order to investigate the effects of bradykinin on the contractility and the electrical activity of antral circular muscle of guinea-pig stomach, the isometric contraction and membrane potential were recorded. Also, using standard patch clamp technique, the $Ca^{2+}-activated$ K currents were recorded to observe the change in cytosolic $Ca^{2+}$ concentration. $0.4 {\mu}M$ bradykinin induced a triphasic contractile response (transient contraction-transient relaxation-sustained contraction) and this response was unaffected by pretreatment with neural blockers (tetrodotoxin, atropine and guanethidine) or with apamin. Bradykinin induced hyperpolarization of resting membrane potential and enhanced the amplitude of slow waves and spike potentials. The enhancement of spike potentials was blocked by neural blockers. Both the bradykinin-induced contractions and changes in membrane potential were reversed by the selective $B_2$-receptor antagonist $(N{\alpha}-adamantaneacetyl-_{D}-Arg-[Hyp, Thy,_{D}-Phe]-bradykinin)$. In whole-cell patch clamp experiment, we held the membrane potential at -20 mV and spontaneous and transient changes of Ca-activated K currents were recorded. Bradykinin induced a large transient outward current, consistent with a calcium-releasing action of bradykinin front the intracellular calcium pool, because such change was blocked by pretreatment with caffeine. Bradykinin-induced contraction was also blocked by pretreatment with caffeine. From these results, it is suggested that bradykinin induces a calciumrelease and contraction through the $B_{2}$ receptor of guinea-pig gastric smooth muscle. Enhancement of slow wave activity is an indirect action of bradykinin through enteric nerve cells embedded in muscle strip.

  • PDF

Taxifolin Glycoside Blocks Human ether-a-go-go Related Gene $K^+$ Channels

  • Yun, Jihyun;Bae, Hyemi;Choi, Sun Eun;Kim, Jung-Ha;Choi, Young Wook;Lim, Inja;Lee, Chung Soo;Lee, Min Won;Ko, Jae-Hong;Seo, Seong Jun;Bang, Hyoweon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • Taxifolin glycoside is a new drug candidate for the treatment of atopic dermatitis (AD). Many drugs cause side effects such as long QT syndrome by blocking the human ether-a-go-go related gene (hERG) $K^+$ channels. To determine whether taxifolin glycoside would block hERG $K^+$ channels, we recorded hERG $K^+$ currents using a whole-cell patch clamp technique. We found that taxifolin glycoside directly blocked hERG $K^+$ current in a concentration-dependent manner ($EC_{50}=9.6{\pm}0.7{\mu}M$). The activation curve of hERG $K^+$ channels was negatively shifted by taxifolin glycoside. In addition, taxifolin glycoside accelerated the activation time constant and reduced the onset of the inactivation time constant. These results suggest that taxifolin glycoside blocks hERG $K^+$ channels that function by facilitating activation and inactivation process.

Effects of Histamine on Cultured Interstitial Cells of Cajal in Murine Small Intestine

  • Kim, Byung Joo;Kwon, Young Kyu;Kim, Euiyong;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.149-156
    • /
    • 2013
  • Interstitial cells of Cajal (ICCs) are the pacemaker cells in the gastrointestinal tract, and histamine is known to regulate neuronal activity, control vascular tone, alter endothelial permeability, and modulate gastric acid secretion. However, the action mechanisms of histamine in mouse small intestinal ICCs have not been previously investigated, and thus, in the present study, we investigated the effects of histamine on mouse small intestinal ICCs, and sought to identify the receptors involved. Enzymatic digestions were used to dissociate ICCs from small intestines, and the whole-cell patch-clamp configuration was used to record potentials (in current clamp mode) from cultured ICCs. Histamine was found to depolarize resting membrane potentials concentration dependently, and whereas 2-PEA (a selective H1 receptor agonist) induced membrane depolarizations, Dimaprit (a selective H2-agonist), R-alpha-methylhistamine (R-alpha-MeHa; a selective H3-agonist), and 4-methylhistamine (4-MH; a selective H4-agonist) did not. Pretreatment with $Ca^{2+}$-free solution or thapsigargin (a $Ca^{2+}$-ATPase inhibitor in endoplasmic reticulum) abolished the generation of pacemaker potentials and suppressed histamine-induced membrane depolarization. Furthermore, treatments with U-73122 (a phospholipase C inhibitor) or 5-fluoro-2-indolyl des-chlorohalopemide (FIPI; a phospholipase D inhibitor) blocked histamine-induced membrane depolarizations in ICCs. On the other hand, KT5720 (a protein kinase A inhibitor) did not block histamine-induced membrane depolarization. These results suggest that histamine modulates pacemaker potentials through H1 receptor-mediated pathways via external $Ca^{2+}$ influx and $Ca^{2+}$ release from internal stores in a PLC and PLD dependent manner.

Acepromazine inhibits hERG potassium ion channels expressed in human embryonic kidney 293 cells

  • Joo, Young Shin;Lee, Hong Joon;Choi, Jin-Sung;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.75-82
    • /
    • 2017
  • The effects of acepromazine on human ether-$\grave{a}$-go-go-related gene (hERG) potassium channels were investigated using whole-cell voltage-clamp technique in human embryonic kidney (HEK293) cells transfected with hERG. The hERG currents were recorded with or without acepromazine, and the steady-state and peak tail currents were analyzed for the evaluating the drug effects. Acepromazine inhibited the hERG currents in a concentration-dependent manner with an $IC_{50}$ value of $1.5{\mu}M$ and Hill coefficient of 1.1. Acepromazine blocked hERG currents in a voltage-dependent manner between -40 and +10 mV. Before and after application of acepromazine, the half activation potentials of hERG currents changed to hyperpolarizing direction. Acepromazine blocked both the steady-state hERG currents by depolarizing pulse and the peak tail currents by repolarizing pulse; however, the extent of blocking by acepromazine in the repolarizing pulse was more profound than that in the depolarizing pulse, indicating that acepromazine has a high affinity for the open state of the channels, with a relatively lower affinity for the closed state of hERG channels. A fast application of acepromazine during the tail currents inhibited the open state of hERG channels in a concentration-dependent. The steady-state inactivation of hERG currents shifted to the hyperpolarized direction by acepromazine. These results suggest that acepromazine inhibits the hERG channels probably by an open- and inactivated-channel blocking mechanism. Regarding to the fact that the hERG channels are the potential target of drug-induced long QT syndrome, our results suggest that acepromazine can possibly induce a cardiac arrhythmia through the inhibition of hERG channels.

Mechanisms of tert-Buthyl Hydroperoxide-induced Membrane Depolarization in Rat Spinal Substantia Gelatinosa Neurons

  • Lim, Seong-Jun;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.117-123
    • /
    • 2008
  • Reactive oxygen species (ROS) are toxic agents that may be involved in various neurodegenerative diseases. Recent studies indicate that ROS can act as modulators of neuronal activity, and are critically involved in persistent pain primarily through spinal mechanisms. In the present study, whole cell patch clamp recordings were carried out to investigate the effects of tert-buthyl hydroperoxide (t-BuOOH), an ROS, on neuronal excitability and the mechanisms underlying changes of membrane excitability. In current clamp condition, application of t-BuOOH caused a reversible membrane depolarization and firing activity in substantia gelatinosa (SG) neurons. When slices were pretreated with phenyl-N-tert-buthylnitrone (PBN) and ascorbate, ROS scavengers, t-BuOOH failed to induce membrane depolarization. However, isoascorbate did not prevent t-BuOOH-induced depolarization, suggesting that the site of ROS action is intracellular. The t-BuOOH-induced depolarization was not blocked by pretreatment with dithiothreitol (DTT), a sulfhydryl-reducing agent. The membrane-impermeant thiol oxidant 5,5-dithiobis 2-nitrobenzoic acid (DTNB) failed to induce membrane depolarization, suggesting that the changes of neuronal excitability by t-BuOOH are not caused by the modification of extrathiol group. The t-BuOOH-induced depolarization was suppressed by the phospholipase C (PLC) blocker U-73122 and inositol triphosphate ($IP_3$) receptor antagonist 2-aminoethoxydiphenylbolate (APB), and after depletion of intracellular $Ca^{2+}$ pool by thapsigargin. These data suggest that ROS generated by peripheral nerve injury can induce central sensitization in spinal cord, and t-BuOOH-induced depolarization may be regulated by intracellular $Ca^{2+}$ store mainly via $PLC-IP_3$ pathway.