Browse > Article
http://dx.doi.org/10.1007/s10059-009-0076-1

Carbachol Regulates Pacemaker Activities in Cultured Interstitial Cells of Cajal from the Mouse Small Intestine  

So, Keum Young (Department of Anesthesiology, College of Medicine, Chosun University)
Kim, Sang Hun (Department of Anesthesiology, College of Medicine, Chosun University)
Sohn, Hong Moon (Department of Orthopedic Surgery, College of Medicine, Chosun University)
Choi, Soo Jin (Department of Radiology, College of Medicine, Gachon Universtiy)
Parajuli, Shankar Prasad (Department of Physiology, College of Medicine, Chosun Universtiy)
Choi, Seok (Department of Physiology, College of Medicine, Chosun Universtiy)
Yeum, Cheol Ho (Department of Physiology, College of Medicine, Chosun Universtiy)
Yoon, Pyung Jin (Department of Physiology, College of Medicine, Chosun Universtiy)
Jun, Jae Yeoul (Department of Physiology, College of Medicine, Chosun Universtiy)
Abstract
We studied the effect of carbachol on pacemaker currents in cultured interstitial cells of Cajal (ICC) from the mouse small intestine by muscarinic stimulation using a whole cell patch clamp technique and $Ca^{2+}$-imaging. ICC generated periodic pacemaker potentials in the current-clamp mode and generated spontaneous inward pacemaker currents at a holding potential of -70 mV. Exposure to carbachol depolarized the membrane and produced tonic inward pacemaker currents with a decrease in the frequency and amplitude of the pacemaker currents. The effects of carbachol were blocked by 1-dimethyl-4-diphenylacetoxypiperidinium, a muscarinic $M_3$ receptor antagonist, but not by methotramine, a muscarinic $M_2$ receptor antagonist. Intracellular $GDP-{\beta}-S$ suppressed the carbachol-induced effects. Carbachol-induced effects were blocked by external $Na^+$-free solution and by flufenamic acid, a non-selective cation channel blocker, and in the presence of thapsigargin, a $Ca^{2+}$-ATPase inhibitor in the endoplasmic reticulum. However, carbachol still produced tonic inward pacemaker currents with the removal of external $Ca^{2+}$. In recording of intracellular $Ca^{2+}$ concentrations using fluo 3-AM dye, carbachol increased intracellular $Ca^{2+}$ concentrations with increasing of $Ca^{2+}$ oscillations. These results suggest that carbachol modulates the pacemaker activity of ICC through the activation of non-selective cation channels via muscarinic $M_3$ receptors by a G-protein dependent intracellular $Ca^{2+}$ release mechanism.
Keywords
carbachol; interstitial cells of Cajal; intestine; muscarinic receptor;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Inoue, R., and Isenberg, G. (1990a). Intracellular calcium ions modulate acetylcholine-induced inward current in guinea-pig ileum. J. Physiol. 424, 73-92   DOI   PUBMED
2 Kim, B.J., Lim, H.H., Yang, D.K., Jun, J.Y., Chang, I.Y., Park, C.S., So, I., Stanfield, P.R., and Kim, K.W. (2005). Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology 129, 1504-1517   DOI   ScienceOn
3 Suzuki, H. (2000). Cellular mechanisms of myogenic activity in gastric smooth muscle. Jpn. J. Physiol. 50, 289-301   DOI   PUBMED   ScienceOn
4 Thomsen, L., Robinson, T.L., Lee, J.C., Farraway, L.A., Hughes, M.J., Andrews, D.W., and Huizinga, J.D. (1998). Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat. Med. 4, 848-851   DOI   ScienceOn
5 Unno, T., Matsuyama, H., Okamoto, H., Sakamoto, T., Yamamoto, M., Tanahashi, Y., Yan, H.D., and Komori, S. (2006). Muscarinic cationic current in gastrointestinal smooth muscles: signal transduction and role in contraction. Auton. Autacoid. Pharmacol. 26, 203-217   DOI   ScienceOn
6 Vogalis, F., and Sanders, K.M. (1990). Cholinergic stimulation activates a non-selective cation current in canine pyloric circular muscle cells. J. Physiol. 429, 223-236   DOI
7 Zagorodnyuk, V., Santicioli, P., and Maggi, C.A. (1994). Different $Ca^{2+}$ influx pathways mediate tachykinin receptor-induced contraction in circular muscle of guinea-pig colon. Eur. J. Pharmacol. 255, 9-15   DOI   ScienceOn
8 Jun, J.Y., Choi, S., Yeum, C.H., Chang, I.Y., You, H.J., Park, C.K., Kim, M.Y., Kong, I.D., Kim, M.J., Lee, K.P., et al. (2004). Substance P induces inward current and regulates pacemaker currents through tachykinin NK1 receptor in cultured interstitial cells of Cajal of murine small intestine. Eur. J. Pharmacol. 495, 35-42   DOI   ScienceOn
9 Sims, S.M. (1992). Cholinergic activation of a non-selective cation current in canine gastric smooth muscle is associated with contraction. J. Physiol. 449, 377-398   DOI
10 Inoue, R., and Chen, S. (1993). Physiology of muscarinic receptoroperated nonselective cation channels in guinea-pig ileal smooth muscle. EXS. 66, 261-268   PUBMED
11 Torihashi, S., Fujimoto, T., Trost, C., and Nakayama, S. (2002). Calcium oscillation linked to pacemaking of interstitial cells of Cajal: requirement of calcium influx and localization of TRP4 in caveolae. J. Biol. Chem. 277, 19191-19197   DOI   ScienceOn
12 Sanders, K.M., Koh, S.D., and Ward, S.M. (2006). Interstitial cells of Cajal as pacemakers in the gastrointestinal tract. Annu. Rev. Physiol.68, 307-343   DOI   ScienceOn
13 Koh, S.D., Sanders, K.M., and Ward, S.M. (1998). Spontaneous electrical rhythmicity in cultured interstitial cells of cajal from the murine small intestine. J. Physiol. 513, 203-213   DOI   ScienceOn
14 Ward, S.M., and Sanders, K.M. (2006). Involvement of intramuscular interstitial cells of Cajal in neuroeffector transmission in the gastrointestinal tract. J. Physiol. 576, 675-682   DOI   ScienceOn
15 Olsson, C., and Holmgren, S. (2001). The control of gut motility. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 128, 481-503   PUBMED
16 Walker, R.L., Koh, S.D., Sergeant, G.P., Sanders, K.M., and Horowitz, B. (2002). TRPC4 currents have properties similar to the pacemaker current in interstitial cells of Cajal. Am. J. Physiol. Cell. Physiol. 283, C1637-C1645   DOI
17 Streutker, C.J., Huizinga, J.D., Driman, D.K., and Riddell, R.H. (2007). Interstitial cells of Cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology. 50, 176-189   DOI   ScienceOn
18 Ward, S.M., Ordog, T., Koh, S.D., Baker, S.A., Jun, J.Y., Amberg, G., Monaghan, K., and Sanders, K.M. (2002). Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria. J. Physiol. 525, 355-361   DOI   ScienceOn
19 Won, K.J., Sanders, K.M., and Ward, S.M. (2005). Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. Proc. Natl. Acad. Sci. USA 102, 14913-14918   DOI   ScienceOn
20 Huizinga, J.D., Chang, G., Diamant, N.E., and El-Sharkawy, T.Y. (1984). Electrophysiological basis of excitation of canine colonic circular muscle by cholinergic agents and substance P. J. Pharmacol. Exp. Ther. 231, 692-699
21 Sanders, K.M. (1998). G protein-coupled receptors in gastrointestinal physiology. IV. Neural regulation of gastrointestinal smooth muscle. Am. J. Physiol. 275, G1-G7   DOI
22 Inoue, R., and Isenberg, G. (1990b). Acetylcholine activates nonselective cation channels in guinea pig ileum through a G protein. Am. J. Physiol. 258, C1173-C1178   DOI
23 Hirst, G.D., and Edwards, F.R. (2004). Role of interstitial cells of Cajal in the control of gastric motility. J. Pharmacol. Sci. 96, 1-10   DOI   ScienceOn
24 Jun, J.Y., Kong, I.D., Koh, S.D., Wang, X.Y., Perrino, B.A., Ward, S.M., and Sanders, K.M. (2001). Regulation of ATP-sensitive $K^{+}$ channels by protein kinase C in murine colonic myocytes. Am. J. Physiol. Cell. Physiol. 281, C857-C64   DOI   PUBMED
25 Sakamoto, T., Unno, T., Matsuyama, H., Uchiyama, M., Hattori, M., Nishimura, M., and Komori, S. (2006). Characterization of muscarinic receptor-mediated cationic currents in longitudinal smooth muscle cells of mouse small intestine. J. Pharmacol. Sci. 100, 215-226   DOI   ScienceOn
26 Szurszewski, J.H. (1987). Electrical basis for gastrointestinal motility. In Physiology of the Gastrointestinal Tract, L.R. Johnson, ed., 2nd ed. (New York, USA; Raven Press), pp. 383-422
27 Choi, S., Yeum, C.H., Chang, I.Y., You, H.J., Park, J.S., Jeong, H.S., So, I., Kim, K.W., and Jun, J.Y. (2006). Activating of ATPdependent $K^{+}$ channels comprised of $K_{ir}$ 6.2 and SUR 2B by $PGE_{2}$ through $EP_{2}$ receptor in cultured interstitial cells of Cajal from murine small intestine. Cell. Physiol. Biochem. 18, 187-198   DOI   ScienceOn
28 Kim, T.W., Koh, S.D., Ordog, T., Ward, S.M., and Sanders, K.M. (2003). Muscarinic regulation of pacemaker frequency in murine gastric interstitial cells of Cajal. J. Physiol. 546, 415-425   DOI   ScienceOn
29 Koh, S.D., Jun, J.Y., Kim, T.W., and Sanders, K.M. (2002). A $Ca^{2+}$-inhibited non-selective cation conductance contributes to pacemaker currents in mouse interstitial cell of Cajal. J. Physiol. 540, 803-814   DOI   ScienceOn
30 Hirst, G.D., Dickens, E.J., and Edwards, F.R. (2002). Pacemaker shift in the gastric antrum of guinea-pigs produced by excitatory vagal stimulation involves intramuscular interstitial cells. J. Physiol. 541, 917-928   DOI   ScienceOn
31 Kuriyama, H., Kitamura, K., Itoh, T., and Inoue, R. (1998). Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol. Rev. 78, 811-920   DOI   PUBMED
32 Epperson, A., Hatton, W.J., Callaghan, B., Doherty, P., Walker, R.L., Sanders, K.M., Ward, S.M., and Horowitz, B. (2000). Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal. Am. J. Physiol. Cell. Physiol. 279, C529-C539   DOI
33 Inoue, R. (1991). Effect of external $Cd^{2+}$ and other divalent cations on carbachol-activated non-selective cation channels in guineapig ileum. J. Physiol. 442, 447-463   DOI
34 Nakayama, S., Ohya, S., Liu, H.N., Watanabe, T., Furuzono, S., Wang, J., Nishzawa, Y., Aoyama, M., Murase, N., Matsubara, T., et al. (2005). Sulphonylurea receptors differently modulate ICC pacemaker $Ca^{2+}$ activity and smooth muscle contractility. J. Cell. Sci. 118, 4163-4173   DOI   ScienceOn