• Title/Summary/Keyword: Whole Flaxseed

Search Result 6, Processing Time 0.02 seconds

Influence of flaxseed with rumen undegradable protein level on milk yield, milk fatty acids and blood metabolites in transition ewes

  • Ababakri, Rahmat;Dayani, Omid;Khezri, Amin;Naserian, Abbas-Ali
    • Journal of Animal Science and Technology
    • /
    • v.63 no.3
    • /
    • pp.475-490
    • /
    • 2021
  • An experiment was conducted to determine the effects of two levels of rumen undegradable protein (RUP) without or with whole or extruded flaxseed on milk yield, milk component, milk fatty acids (FAs) profile and plasma metabolites in transition ewes. Three weeks before and after lambing, seventy-two Baluchi ewes were used in a completely randomized design with a 3 × 2 factorial arrangement of treatments. The treatments contained 1) no flaxseed + 20% RUP (no flaxseed, low RUP [NFLR]); 2) no flaxseed + 40% RUP (no flaxseed, high RUP [NFHR]); 3) 10% whole flaxseed + 20% RUP (whole flaxseed, low RUP [WFLR]); 4) 10% whole flaxseed + 40% RUP (whole flaxseed, high RUP [WFHR]); 5) 10% extruded flaxseed + 20% RUP (extruded flaxseed, low RUP [EFLR]), and 6) 10% extruded flaxseed + 40% RUP (extruded flaxseed, high RUP [EFHR]). Ewes fed 10% extruded flaxseed exhibited higher (p < 0.001) dry matter intake (DMI) and colostrum yield (p < 0.1) compared to other treatments. Two types of flaxseed and RUP levels had no significant effect on milk yield, but milk fat and protein contents decreased and increased in diets containing 40% RUP, respectively. Ewes fed extruded flaxseed produced milk with lower concentrations of saturated fatty acids (SFA) and higher α-linolenic and linoleic acids and also polyunsaturated fatty acids (PUFA) compared to other groups (p < 0.05). During post-lambing, the ewes fed diets containing flaxseed exhibited higher concentration of serum non-esterified FAs (NEFA) compared to diets without flaxseed (p < 0.01). The concentration of serum β-hydroxybutyric acid (BHBA) decreased in the diets containing flaxseed types at pre-lambing, but increased in diets containing extruded flaxseed at post-lambing (p < 0.01). The serum glucose concentration of ewes (pre and post-lambing) which consumed diets containing extruded flaxseed or 40% RUP increased, but blood urea concentration was elevated following supplementation of diet with whole flaxseed or 40% RUP (p < 0.001). In conclusion, utilization of 10% extruded flaxseed in the diets of transition ewes had positive effects on animal performance with favorable changes in milk FAs profile. However, there is no considerable advantage to supply more than 20% RUP level in the diet of transition dairy sheep.

Processing Flaxseed for Food and Feed Uses

  • Wiesenborn, Dennis;Tostenson, Kristi;Kangas, Nancy;Zheng, Yun-Ling;Hall III, Clifford;Niehaus, Mary;Jarvis, Paul;Schwarz, Jurgen;Twombly, Wesley
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.305-310
    • /
    • 2005
  • Flaxseed is outstanding for lignans and oil rich in ${\alpha}$-linolenic acid which protect against several major illnesses. Better understanding of processing and storage characteristics of flaxseed will increase options for food use. Lignans and oil are found in the hull and embryo, respectively. Comparison of pearling and impact-dehulling processes for separation of lignan and oil-rich fractions showed the impact process was less effective, but easier to scale-up. Screw-pressing embryo reduced oil yield compared to whole seed, but doubled productivity and sharply reduced frictional heating of the oil. Flaxseed hull and embryo, also whole, ground and steamed-ground samples, were stable up to 30 weeks in closed containers at $23^{\circ}C$. Steamed-ground samples in open trays at $40^{\circ}C$ deteriorated markedly (peroxide value > 100 by 22 weeks); yet, whole seed remained stable. Incorporation of 18% flaxseed embryo into yellow perch feed increased ${\alpha}$-linolenic acid to 13 to l4% of muscle and liver lipids, compared to 0.5 to 0.7% in the no-embryo control. Feed conversion ratio, weight gain, and survival were similar. These studies are helping to establish the technological base for processing and utilizing flaxseed and flaxseed fractions to improve human diets.

Effects of Flaxseed Diets on Fattening Response of Hanwoo Cattle : 1. Performance and Carcass Characteristics

  • Kim, C.M.;Kim, J.H.;Chung, T.Y.;Park, K.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1241-1245
    • /
    • 2004
  • Two separate trials were conducted to determine effects of dietary level of whole flaxseed (WFS; 0, 10 and 15%) on feed intake, weight gain, and carcass yield and quality of Korean Hanwoo cattle. The daily gains of bulls (Trial 1) were not different among treatment groups, but those of cows (Trial 2) fed WFS 15% were higher (p<0.01) than others. Feed intake of both bulls and cows tended to decrease as dietary level of WFS increased. However, feed conversion ratio (feed/gain) of bulls tended to be improved by dietary inclusion of WFS and was significantly improved (p<0.01) in cows by increasing level of WFS. Neither carcass weight nor dressing percentage were affected by WFS level. Back fat thickness of bulls was decreased (p<0.01) by dietary inclusion of WFS and the same trend was observed in cows without statistical significance. Loin-eye area of bulls was not different among treatment groups but was significantly higher (p<0.01) in cows fed WFS. Carcass yield and quality were not improved by WFS addition. The results indicate that WFS is an acceptable fat source in diets of finishing beef cattle to increase energy density without any adverse effects.

Effects of Flaxseed Diets on Performance, Carcass Characteristics and Fatty Acid Composition of Hanwoo Steers

  • Kim, Chong-min;Kim, Jeong-hoon;Oh, Young-kyoon;Park, Eun-kyu;Ahn, Gyu-chul;Lee, Gang-yeon;Lee, Jung-il;Park, Keun-kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.8
    • /
    • pp.1151-1159
    • /
    • 2009
  • This study was conducted to determine the effects of dietary level of whole flaxseed (WFS; 0, 10 and 15%) on performance, carcass characteristics and fatty acid composition of serum and subcutaneous, perirenal, and intramuscular adipose tissues of Korean Hanwoo cattle. The daily gains were not different among treatments. Dietary inclusion of WFS decreased (p<0.05) feed intake but improved (p<0.05) feed conversion ratio (feed/gain). Backfat thickness and marbling score were increased (p<0.05) by dietary WFS. Carcass weight, dressing percentage, loin-eye area, and carcass yield and quality were not different among treatments. The proportion of C18:3 in serum and, to a lesser extent, in adipose tissues were increased (p<0.01) by dietary WFS, indicating that lipids from WFS escaped ruminal biohydrogenation. Animals fed WFS had lower proportions of saturated fatty acid (SFA; C14:0 and 16:0) and higher proportions of polyunsaturated fatty acids (PUFA; C18:2. 18:3, 20:2, 20:4, 20:5 and 22:6) in perirenal and intramuscular fat than animals fed diets without WFS, resulting in an increased PUFA/SFA ratio. Furthermore, feeding WFS increased (p<0.01) proportions of $\omega$-3 and $\omega$-6 fatty acids in intramuscular fat but decreased (p<0.05) the $\omega$-6/$\omega$-3 ratio. Relative treatment effects were similar between 10 and 15% WFS. Feeding WFS can effectively alter composition of adipose tissues with enhanced feed conversion ratio.

Plant Extracts and Plant-Derived Compounds: Promising Players in Countermeasure Strategy Against Radiological Exposure: A Review

  • Kma, Lakhan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2405-2425
    • /
    • 2014
  • Radiation exposure leads to several pathophysiological conditions, including oxidative damage, inflammation and fibrosis, thereby affecting the survival of organisms. This review explores the radiation countermeasure properties of fourteen (14) plant extracts or plant-derived compounds against these cellular manifestations. It was aimed at evaluating the possible role of plants or its constituents in radiation countermeasure strategy. All the 14 plant extracts or compounds derived from it and considered in this review have shown some radioprotection in different in vivo, ex-vivo and or in vitro models of radiological injury. However, few have demonstrated advantages over the others. C. majus possessing antioxidant, anti-inflammatory and immunomodulatory effects appears to be promising in radioprotection. Its crude extracts as well as various alkaloids and flavonoids derived from it, have shown to enhance survival rate in irradiated mice. Similarly, curcumin with its antioxidant and the ability to ameliorate late effect of radiation exposure, combined with improvement in survival in experimental animal following irradiation, makes it another probable candidate against radiological injury. Furthermore, the extracts of P. hexandrum and P. kurroa in combine treatment regime, M. piperita, E. officinalis, A. sinensis, nutmeg, genistein and ginsan warrants further studies on their radioprotective potentials. However, one that has received a lot of attention is the dietary flaxseed. The scavenging ability against radiation-induced free radicals, prevention of radiation-induced lipid peroxidation, reduction in radiation cachexia, level of inflammatory cytokines and fibrosis, are some of the remarkable characteristics of flaxseed in animal models of radiation injury. While countering the harmful effects of radiation exposure, it has shown its ability to enhance survival rate in experimental animals. Further, flaxseed has been tested and found to be equally effective when administered before or after irradiation, and against low doses (${\leq}5Gy$) to the whole body or high doses (12-13.5 Gy) to the whole thorax. This is particularly relevant since apart from the possibility of using it in pre-conditioning regime in radiotherapy, it could also be used during nuclear plant leakage/accidents and radiological terrorism, which are not pre-determined scenarios. However, considering the infancy of the field of plant-based radioprotectors, all the above-mentioned plant extracts/plant-derived compounds deserves further stringent study in different models of radiation injury.

Effects of Flaxseed Diets on Fattening Response of Hanwoo Cattle : 2. Fatty Acid Composition of Serum and Adipose Tissues

  • Kim, C.M.;Kim, J.H.;Chung, T.Y.;Park, K.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1246-1254
    • /
    • 2004
  • Two separate trials were designed to determine effects of dietary level of whole flaxseed (WFS) on fatty acid composition of serum, and subcutaneous, perirenal, intermuscular, and intramuscular adipose tissues of Korean Hanwoo cattle. Twentyone bulls (trial 1) and 15 cows (trial 2) were assigned to diets containing 0, 10 or 15% WFS. Relative treatment effects were similar between bulls and cows. The proportion of C18:3 in serum and to a lesser extent in adipose tissues were increased by dietary inclusion of WFS, reflecting supplemented lipid composition of WFS that escaped ruminal biohydrogenation. Animals fed WFS had a lower proportion of saturated fatty acids in serum and adipose tissues than animals fed diets without WFS, while the opposite trend was observed in unsaturated fatty acids with little differences between two WFS groups. WFS-fed animals had higher proportions of C18:1, 18:2, 18:3, 20:3, and 22:3 and lower proportions of C12:0, 14:0, 16:0 and 18:0 in intramuscular fat than animals fed diets without WFS. Furthermore, feeding WFS increased proportions of both $\omega$-3 and $\omega$-6 fatty acids but decreased the ratio of $\omega$-6/$\omega$-3 substantially. In conclusion, feeding WFS can be an effective method of increasing absorption of unsaturated fatty acids, and subsequent deposition in adipose tissues.