• 제목/요약/키워드: White-light-emitting OLED

검색결과 76건 처리시간 0.022초

적응적 휘도 감소를 이용한 OLED 패널의 저전력 디스플레이 방법 및 하드웨어 구현 (Hardware Implementation of Low-power Display Method for OLED Panel using Adaptive Luminance Decreasing)

  • 조호상;최대성;서인석;강봉순
    • 한국정보통신학회논문지
    • /
    • 제17권7호
    • /
    • pp.1702-1708
    • /
    • 2013
  • OLED(Organic Light-Emitting Diode)는 LCD와 달리 자체발광 특성 때문에 흰색을 표현할 때에는 R,G,B 소자가 모두 발광하여야 하므로 전력소비가 상대적으로 커지게 되는 문제점이 있다. 본 논문은 OLED 패널을 사용한 기기의 저전력 디스플레이 방법 및 하드웨어 구현에 관한 것이다. 입력 이미지의 휘도 정보를 기반으로 하여 실시간으로 화소 별 휘도 변환 값을 생성하여 적응적 휘도 조절 방법과 색도 축소 알고리즘의 기본 개념을 사용하여 새로운 색상보정 알고리즘을 사용하여 OLED 패널의 저전력 디스플레이 방법을 제안한다. 기존의 방법과 비교함으로써 제안한 방법의 성능을 확인한 결과 최대 48.43%의 전류 감소를 확인하였다. 최종적으로 제안된 알고리즘은 Verilog HDL로 하드웨어를 구현하였으며, OpenCV와 Window 프로그램을 사용하여 소프트웨어적으로 알고리즘을 검증하였다.

Color Variation Improvement by Introducing Double Emission Layers in WPLEDs

  • Kwon, Soon-Kab;Lee, Yong-Kyun;Park, Tae-Jin;Jeong, Su-Hyeon;Jeon, Woo-Sik;Kwon, Jang-Hyuk;Jang, Jin
    • Journal of Information Display
    • /
    • 제7권3호
    • /
    • pp.19-22
    • /
    • 2006
  • White polymeric light-emitting devices (WPLEDs) have been fabricated from polyfluorene-based (PFO) blue and MEH-PPV polymer blending systems. A device structure of ITO / PEDOT:PSS / Blending polymer / Blue polymer / LiF / Al was employed. This structure of double emission layers showed significant improvement of white color shift phenomenon. A current efficiency of 4.67 cd/A (3,900 $cd/m^{2}$, 6.4 V) and a brightness value of 17,600 $cd/m^{2}$ at 9.4 V with (0.34, 0.35) CIE coordinates at 5 V and (0.29, 0.29) at 9 V were achieved achieved.

Development of 40 inch Full Color AMOLED Display

  • Chung, K.;Huh, J.M.;Sung, U.C.;Chai, C.C.;Lee, J.H.;Kim, H.;Lee, S.P.;Goh, J.C.;Park, S.K.;Ko, C.S.;Koh, B.S.;Shin, K.J.;Choi, J.H.;Jung, J.H.;Kim, N.D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.I
    • /
    • pp.781-784
    • /
    • 2005
  • We have developed technology to fabricate large-size active matrix organic light-emitting diode (AMOLED) displays with good color purity. Using these innovations, we have developed a 40inch diagonal WXGA AMOLED full color display. Because the TFT circuitry occupies a large portion of the pixel structure, an efficient white emission OLED is essential to integrate the device onto the active matrix backplane. The development of these technologies enables OLED displays to fulfill the requirements for larger size applications such as HDTVs

  • PDF

Data Supply Voltage Reduction Scheme for Low-Power AMOLED Displays

  • Nam, Hyoungsik;Jeong, Hoon
    • ETRI Journal
    • /
    • 제34권5호
    • /
    • pp.727-733
    • /
    • 2012
  • This paper demonstrates a new driving scheme that allows reducing the supply voltage of data drivers for low-power active matrix organic light-emitting diode (AMOLED) displays. The proposed technique drives down the data voltage range by 50%, which subsequently diminishes in the peak power consumption of data drivers at the full white pattern by 75%. Because the gate voltage of a driving thin film transistor covers the same range as a conventional driving scheme by means of a level-shifting scheme, the low-data supply scheme achieves the equivalent dynamic range of OLED currents. The average power consumption of data drivers is reduced by 60% over 24 test images, and power consumption is kept below 25%.

High Performance Flexible Inorganic Electronic Systems

  • 박귀일;이건재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

단일 호스트와 3색 도펀트를 이용한 고휘도 백색 유기발광다이오드 제작과 특성 평가 (Fabrication and Characterization of High Luminance WOLED Using Single Host and Three Color Dopants)

  • 김민영;이준호;장지근
    • 한국재료학회지
    • /
    • 제26권3호
    • /
    • pp.117-122
    • /
    • 2016
  • White organic light-emitting diodes with a structure of indium-tin-oxide [ITO]/N,N-diphenyl-N,N-bis-[4-(phenylm-tolvlamino)-phenyl]-biphenyl-4,4-diamine [DNTPD]/[2,3-f:2, 2-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile [HATCN]/1,1-bis(di-4-poly-aminophenyl) cyclo -hexane [TAPC]/emission layers doped with three color dopants/4,7-diphenyl-1,10-phenanthroline [Bphen]/$Cs_2CO_3$/Al were fabricated and evaluated. In the emission layer [EML], N,N-dicarbazolyl-3,5-benzene [mCP] was used as a single host and bis(2-phenyl quinolinato)-acetylacetonate iridium(III) [Ir(pq)2acac]/fac-tris(2-phenylpyridinato) iridium(III) $[Ir(ppy)_3]$/iridium(III) bis[(4,6-di-fluoropheny)-pyridinato-N,C2] picolinate [FIrpic] were used as red/green/blue dopants, respectively. The fabricated devices were divided into five types (D1, D2, D3, D4, D5) according to the structure of the emission layer. The electroluminescence spectra showed three peak emissions at the wavelengths of blue (472~473 nm), green (495~500 nm), and red (589~595 nm). Among the fabricated devices, the device of D1 doped in a mixed fashion with a single emission layer showed the highest values of luminance and quantum efficiency at the given voltage. However, the emission color of D1 was not pure white but orange, with Commission Internationale de L'Eclairage [CIE] coordinates of (x = 0.41~0.45, y = 0.41) depending on the applied voltages. On the other hand, device D5, with a double emission layer of $mCP:[Ir(pq)_2acac(3%)+Ir(ppy)_3(0.5%)]$/mCP:[FIrpic(10%)], showed a nearly pure white color with CIE coordinates of (x = 0.34~0.35, y = 0.35~0.37) under applied voltage in the range of 6~10 V. The luminance and quantum efficiency of D5 were $17,160cd/m^2$ and 3.8% at 10 V, respectively.