• Title/Summary/Keyword: White smoke

Search Result 39, Processing Time 0.027 seconds

Study on Exhaust Air Heat Transfer Characteristics of Heat Exchange System for White Smoke Reduction (백연 저감을 위한 열교환 시스템의 배기 열전달 특성에 관한 연구)

  • Wang, Zhen-Huan;Chun, Chong-Keun;Kwon, Young-Chul
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.739-744
    • /
    • 2018
  • In this study, effects of reducing white smoke at a heat exchange system for white smoke reduction were studied in the winter season. For this purpose, the heat transfer processes on the exhaust air were investigated by Solidworks. Five wave heat exchangers of air-to-air and air-to-water type were applied for the exhaust air heat recovery. The analytical condition of the exhaust air was fixed and the computational analysis was performed according to the change of SA(supply air) inlet velocities. In order to evaluate the performance of the heat exchange system for white smoke reduction, W(water)/SA recovered capacities and the temperature/absolute humidity reduction rate were calculated. As SA inlet velocity increased, the exit temperature and absolute humidity of the mixing zone were reduced by up to about $40^{\circ}C$ and 0.12kg/kg respectively. Also, W/SA recovered capacities increased linearly up to about 35%.

A Study on Reduction Effect of White Smoke Fog in Urban Detention Basin using a Fog Removal System (안개제거장치를 이용한 도심 저류지 시설에서의 안개 저감 효과 연구)

  • Lee, Kyu Hong;Lee, Sang Woo;Choi, Jun Sung;Lee, Sung Kyun;Park, Jihwan;Park, Seunghee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.69-74
    • /
    • 2018
  • Fog to which environmental impacts are sensitive has a danger to the safety of citizens due to the difficulty in predicting the specific area/time zone. Therefore, we propose a white smoke fog reduction technique using a fog removal device that can remove fog particles directly through dry air and anionic condensation nucleus instead of conventional passive countermeasures. In this study, to verify the effect of reducing fog and the effect of temperature on the white smoke fog which is frequently occurred in the detention basin. As a result, the visible distance of 100m or more was secured within 30 seconds, and it was confirmed that the fog reduction effect is more effective. Also, the lower the temperature, the larger the amount of white smoke fog was. However, the effect of reducing the white smoke fog by temperature was insignificant. Through this experiment, it was possible to verify the reduction effect of the white smoke fog generated in the detention basin through fog removal device.

A Study on Chemical Structure of White Smoke Grenade by Aging (가속노화에 따른 백색 연막수류탄(M8)의 화학적 구조 변화에 관한 연구)

  • Park, Jang-Ho;Cho, Min-Su;Kim, Young-Dae;Lee, Byung-Teak;Chang, Il-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1186-1191
    • /
    • 2011
  • Composition which was used as a white smoke grenade consists of Aluminium(Al), Hexachloroethane(HCE) and Zinc Oxide(ZnO), etc. there is a possibility of misfire due to long term storage and there are very few reports on the mechanism behind misfire. In this study, an experimental method known as accelerated degradation testing is used to investigate the chemical mechanism resulting in misfire. The mechanism of chemical change during long term storage was analyzed with XRD and FT-IR. Analysis results suggest that a part of HCE consisting of the white smoke grenade disappeared and the other part was combined into $ZnCl_2$, $AlCl_3$, as a recycled intermediate product under closed system.

Design of Turbidity Measurement of White Plume using Optical Method (광학기법을 이용한 백색 굴뚝연기 혼탁도 측정의 설계)

  • Son, Hyun-Keun;Ban, Chae-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1195-1200
    • /
    • 2020
  • The DOM (: Digital Optical Method), which measures the turbidity of chimney smoke, is a method of calculating the turbidity by setting the area to be measured and the contrast area using a low-cost digital camera that can be easily obtained. However, it is difficult to measure clouds and white smoke in a cloudy sky. In this paper, we develop a background sky type model that can represent the background sky and classify the type by periodically photographing it with a digital camera to solve this problem. In addition, based on the model, we develop a filter to optimize white smoke image and prove its excellence through experiments.

A Study on Response Characteristics of Photoelectric Type Smoke Detector Chamber Due to Dust Color (분진색상에 따른 광전식연기감지기 챔버의 응답특성에 관한 연구)

  • Lee, Ho-Sung;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.44-52
    • /
    • 2017
  • This paper is based on a study of the response characteristics of photoelectric type smoke detector chambers according to dust color. Due to an amendment to the Fire Safety Codes to automatic fire alarm systems and visual alarm device, the installation of indoor smoke detectors has become mandatory, but in Korea there is still insufficient research on the non-operation or false alarms that could arise in indoor environments by indoor dust and other environmental conditions etc. In light of this, for this study, research was conducted on the indoor adaptability of smoke detector under various colors of fiber dust that were judged to occur most frequently in among the common indoor dust, photoelectric smoke detector with the lattice-type smoke detection chamber that the smoke detector which is most popular in the country was used, and four colors of fiber dust (brown, white, gray and black) were used the test dusts for carrying out dust and sensitivity testing. Also, the voltage of the photocell part of the smoke chamber was measured, and the scattering phenomenon in the chamber was observed. The result of the testing showed that all four dust types were suitable for dust and sensitivity testing under conditions of pollution A. Yet, there were occasions, at pollution B or C, where the brown, white and gray dust would cause fail alarm during operation testing. And black dust was confirmed to cause non-operation during operation testing. In the case of brown and white dust, the voltage measurement result of the photocell part of the smoke chamber confirmed that the voltage increases as the pollution level increases, and in the case of gray and black dust, the voltage decreases.

Efficient Process Control Through Research on Storage Lifetime of a White Smoke Hand Grenade, KM8 (저장수명 연구를 통한 백색 연막수류탄(KM8)의 공정관리 효율화)

  • Chang, Il-Ho;Hong, Suk-Hwan;Back, Seung-Jun;Son, Young-Kap
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.888-896
    • /
    • 2011
  • A white smoke hand grenade, KM8 is used to make smoke screen in order to provide visual field interceptions or signals. The grenade fails when its time to emit smoke is longer than the specified emission time so that the smoke concentration becomes lighter. This paper considered failure in smoke emission time, and evaluated its storage lifetime. The main objective of this paper is to modify the present specification limits of smoke emission time for the efficient process control in manufacturing, through analyzing effect of its specification change on the storage lifetime, based on the lifetime evaluation results. Accelerated degradation test was performed and then failure in smoke emission time was reproduced from the test. And estimated storage lifetimes from the accelerated test results was compared to evaluated lifetimes of grenades using the ASRP data. Past process testing results of the grenade in manufacturing were analyzed in this paper. Then, each storage lifetime for the specifications, ${\pm}3$ and ${\pm}5$ in seconds, extended from the current specification in manufacturing were estimated using the past testing results, and compared to one another.

Study for Binary Liquid Type Fire Retardant White Paint of Polyurethane Lacquer (저연기성 이액형 방염우레탄락카 백색도료 연구)

  • Kwon, Kyungok
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.527-530
    • /
    • 2007
  • The binary liquid type fire retardant paint of polyurethane (alkyd resin) lacquer is developed to cover the defect of one liquid type white paint of chlorinated rubber used generally but which has weak surface and poor adhesive strength to the wood as well as generating much black smoke when it is firing. The properties of the composition of binary liquid type of white paint of polyurethane lacquer developed in this study for using to wood has shown that the better suppressed smoke generation and enhanced the adhesive strength to the wood than that of fire retardant white paint used.

Heat Flow Characteristics on Type of Heat Transfer Plate for White Smoke Reduction under Uniform Flow Condition (균일유동에서 백연저감용 전열판 형태에 대한 열유동 특성)

  • Son, Jun;Cha, Jae Min;Wang, Zhen Huan;Kwon, Young Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.591-596
    • /
    • 2016
  • Numerical analyses were performed on the heat flow characteristics of a heat transfer plate with six different shapes (basic, rectangle, triangle, wave type) to reduce the level of white smoke at a stack. In this study, to examine the heat transfer performance (heat transfer capacity, pressure drop, turbulence kinetic energy, heat transfer coefficient) on the heat transfer plates, simulations were conducted using the commercial computational fluid dynamics software, ANSYS CFX Ver.14 under uniform flow conditions. The thermal flow phenomenon in a channel with six heat transfer plates could be predicted adequately under uniform flow conditions. The heat transfer capacity, pressure drop, turbulence kinetic energy, and heat transfer coefficient were affected by the flow rate, aspect ratio and plate shape. These results provide guidelines to design an effective heat exchanger with the wave type to reduce white smoke.