• Title/Summary/Keyword: Whirling

Search Result 96, Processing Time 0.03 seconds

Effect of Load Torque on the Synchronous Whirling of a Rotor System (부하토크가 로터시스템의 동기휘돌림에 미치는 영향)

  • 박상규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.132-137
    • /
    • 1997
  • In this study, the effect of load torque on the synchronous whirling of a rotor system has been studied analytically. Results show that the critical value of load torque to damping exists above which synchronous response decreases with increasing load torque. It has been also shown that the synchronous whirling amplitudes are more sensitive to the value of eccentricity and the ratio of disk radius to shaft length of the rotor system than other design parameters for a fixed value of load torque.

  • PDF

A Study on the Measurement and Analysis of Whirling Vibration Behavior of Marine Propulsion Shafting System using Gap-sensors

  • Sun, Jin-Suk;Han, Tae-Min;Lee, Kang-Ki;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.130-135
    • /
    • 2015
  • Recently, as a result of the application of large and multi-blade propellers with high efficiency for large vessels, the vertical bending stiffness of propulsion shafting system tends to be declined. For some specific vessels, the shaft arrangement leads to the forward stern tube bearing to be omitted, decreasing vertical bending stiffness. In this respect, decreased vertical bending stiffness causes the problem which is the blade order resonance frequency to be placed within the operational rpm range of propulsion shafting system. To verify whirling vibration, the measurement should be carried out covering from operating rpm up to target rpm, however, the range is un-measurable generally. In order to resolve the measurement issue, this study shows the measuring method and the assessment method of relevant natural frequency of whiling vibration by using measured harmonic order component of whirling vibration.

Experimental Study on the Whirling, Tilting and Flying Motion of the FDB Spindle System of a 3.5' HDD (3.5인치 HDD용 FDB스핀들 시스템의 훨링, 플라잉과 틸팅 거동에 관한 연구)

  • Oh, S.H.;Lee, S.H.;Jang, G.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.39-45
    • /
    • 2005
  • This research develops an experimental method to measure the motion of a FDB spindle system with a 3.5' disk by using three capacitance probes fixed on the xyz-micrometers, and it shows that a FDB spindle system has the whirling, flying and tilting motion. It also shows that the whirling, flying and tilting motion converge very quickly to the steady state at the same time when the rotor reaches the steady-state speed. However, they are quite large even at the steady state when they are compared with the 10nm flying height of a magnetic head. For the FDB spindle system used in this experiment, the whirl radius and the peak-to-peak variation of flying height and tilting angle at the steady-state speed of 7,200rpm are 0.675m, 30nm and $5.758\times10^{-3^{\circ}}$, respectively, so that the radial motion of the FDB spindle system exceeds a track pitch of a 3.5' HDD with 90,000 TPI.

Rotordynamic Forces Due to Rotor Sealing Gap in Turbines (비대칭 터빈 로터 실에 기인한 축 가진력)

  • Kim Woo June;Song Bum Ho;Song Seung Jin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.545-548
    • /
    • 2002
  • Turbines have been known to be particularly susceptible to flow-induced self-excited vibration. In such vibrations, direct damping and cross stiffness effects of aerodynamic forces determine rotordynamic stability. In axial turbines with eccentric shrouded rotors, the non-uniform sealing gap causes azimuthal non-uniformities in the seal gland pressure and the turbine torque which destabilize the rotor system. Previously, research efforts focused solely on either the seal flow or the unshrouded turbine passge flow. Recently, a model for flow in a turbine with a statically offset shrouded rotor has been developed and some stiffness predictions have been obtained. The model couples the seal flow to the passage flow and uses a small perturbation approach to determine nonaxiymmetric flow conditions. The model uses basic conservation laws. Input parameters include aerodynamic parameters (e.g. flow coefficient, reaction, and work coefficient); geometric parameters (e.g. sealing gap, depth of seal gland, seal pitch, annulus height); and a prescribed rotor offset. Thus, aerodynamic stiffness predictions have been obtained. However, aerodynamic damping (i.e. unsteady aerodynamic) effects caused by a whirling turbine has not yet been examined. Therefore, this paper presents a new unsteady model to predict the unsteady flow field due to a whirling shrouded rotor in turbines. From unsteady perturbations in velocity and pressure at various whirling frequencies, not only stiffness but also damping effects of aerodynamic forces can be obtained. Furthermore, relative contributions of seal gland pressure asymmetry and turbine torque asymmetry are presented.

  • PDF

Influence of Torque Fluctuation on the Stability of a Rotating Disk (토크 하중의 변동이 회전원판의 안정성에 미치는 영향)

  • Shin, Eung-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.110-116
    • /
    • 2015
  • This study investigates the whirling stability of a rotating shaft-disk system under parametric excitation using periodically varying torque. The equations of motion were derived using a lumped-mass model, and the Floquet method was employed to find the effects of torque fluctuation, internal and external damping, and rotational speed on whirling stability. Results indicated that the effect of torque fluctuation was considerable on the instability around resonance, but minimal on supercritical instability. Stability diagrams were sensitive to the parametric excitation frequency; critical torque decreased upon increasing excitation frequency, with faster response convergence or divergence. In addition, internal and external damping had a considerable effect on unstable regions, and reduced the effects of the parametric excitation frequency on critical torque and speed. Results obtained from the Floquet approach were in good agreement with those obtained by numerical integration, except for some cases with Floquet multipliers very close to unity.

A study on the whirling vibration measurement (횡 진동 측정에 관한 연구)

  • Sun, Jin-Suk;Oh, Joo-Won;Kim, Yong-Cheol;Kim, Ue-Kan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.184-184
    • /
    • 2012
  • Recently, as a result of the application of large and multi-blade propellers with high efficiency for large vessels, the vertical bending stiffness of propulsion shafting system tends to be declined. For some specific vessels, the shaft arrangement leads to the forward stern tube bearing to be omitted, decreasing vertical bending stiffness. In this respect, decreased vertical bending stiffness causes the problem which is the blade order resonance frequency to be placed within the operational range of propulsion shafting system. To verify whirling vibration, the measurement should be carried out covering the range of MCR, however, the range is un-measurable. To resolve the measurement issue, this study shows the measuring method and the estimating method of whiling vibration by using resonance frequency of sub harmonic.

  • PDF

Experiment Investigation of Partial Rotor Rub

  • Park, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1250-1256
    • /
    • 2000
  • Rubbing occurs when a rotor contacts with a stator during whirling motion of the rotor. Compared to full annular rub, partial rub against a nonrotating part is more common in practice. In this study, several partial rubbing phenomena of superharmonic and subharmonic vibrations and jump phenomenon are demonstrated experimentally for the cases of light and heavy rub for a flexible rotor. The orbit patterns of forward or backward whirling are also calculated using directional spectrum analysis. The occurrence if subharmonic vibration during heavy rub is demonstrated as one impact per two rotations both experimentally and numerically.

  • PDF

A Study on the Improvement of Sculptured surface Sopography in Milling Operation by Using Tertiary Motion Attachment (밀링작업에서 보조장치를 이용한 자유곡면의 표면거칠기 향상에 관한 연구)

  • 홍민성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.3
    • /
    • pp.66-72
    • /
    • 1996
  • The applicability of a new method, termed the whirling motion concept, for the improvement of the surface finish in milling three-dimensional sculptured surfaces has been investigated. A method for implementing this concept o conventional NC machines that utilize a suitably configured attachment has been proposed. The tool path equation for the ball-end milling process, based on the surface-shaping system, has been obtained. Both results of the computer simulation and the experiment verified the proposed approach.

  • PDF